Hemidodecahedron

From Polytope Wiki
Jump to navigation Jump to search
Hemidodecahedron
Hemidodecahedron.svg
Rank3
TypeRegular
Notation
Bowers style acronymEldoe
Schläfli symbol[1][2]
[2]
Elements
Faces6 pentagons
Edges15
Vertices10
Vertex figureTriangle
Petrie polygons6 pentagons
Related polytopes
DualHemiicosahedron
Petrie dualHemidodecahedron[2]
Orientation double coverDodecahedron
Abstract & topological properties
Flag count60
Euler characteristic1
Schläfli type{5,3}
SurfaceReal projective plane[1]
OrientableNo
Genus1
SkeletonPeterson graph
Properties
SymmetryA5, order 60

The hemidodecahedron is a regular map and abstract polytope. It is a tiling of the projective plane. It can be seen as an dodecahedron with antipodal faces identified.

Realizations[edit | edit source]

The hemidodecahedron has two pure realizations. One in 4-dimensions and one in 5-dimensions.[3]

External links[edit | edit source]

References[edit | edit source]

Bibliography[edit | edit source]

  • McMullen, Peter; Schulte, Egon (1997). "Regular Polytopes in Ordinary Space" (PDF). Discrete Computational Geometry (47): 449–478. doi:10.1007/PL00009304.
  • McMullen, Peter; Schulte, Egon (December 2002), Abstract Regular Polytopes (1st ed.), Cambridge University Press, ISBN 0-521-81496-0