Hemihexadecachoron

From Polytope Wiki
Jump to navigation Jump to search
Hemihexadecachoron
Rank4
TypeRegular
SpaceProjective
Notation
Bowers style acronymElhex
Schläfli symbol
Elements
Cells8 tetrahedra
Faces16 triangles
Edges12
Vertices4
Vertex figureCube
Petrie polygons8 squares
Deep holes8 squares
Related polytopes
DualHemitesseract
Abstract & topological properties
Flag count192
Euler characteristic0
Schläfli type{3,3,4}
OrientableYes

The hemihexadecachoron (also hemi-16-cell or hemi-4-cross-polytope) is a regular polychoron in projective space and a regular abstract polychoron. It can be made by identifying opposite elements of a hexadecachoron.

Like the other hemi-cross-polytopes its simplicial embedding is degenerate and thus it is flat.

External links[edit | edit source]