Hendecagonal-great hendecagrammic duoprism |
---|
|
Rank | 4 |
---|
Type | Uniform |
---|
Notation |
---|
Coxeter diagram | x11o x11/4o (         ) |
---|
Elements |
---|
Cells | 11 hendecagonal prisms, 11 great hendecagrammic prisms |
---|
Faces | 121 squares, 11 hendecagons, 11 great hendecagrams |
---|
Edges | 121+121 |
---|
Vertices | 121 |
---|
Vertex figure | Digonal disphenoid, edge lengths 2cos(π/11) (base 1), 2cos(4π/11) (base 2), √2 (sides) |
---|
Measures (edge length 1) |
---|
Circumradius |  |
---|
Hypervolume |  |
---|
Dichoral angles | Gishenp–11/4–gishenp:  |
---|
| Henp–4–gishenp: 90° |
---|
| Henp–11–henp:  |
---|
Central density | 4 |
---|
Number of external pieces | 33 |
---|
Level of complexity | 12 |
---|
Related polytopes |
---|
Army | Semi-uniform handip |
---|
Dual | Hendecagonal-great hendecagrammic duotegum |
---|
Conjugates | Hendecagonal-small hendecagrammic duoprism, Hendecagonal-hendecagrammic duoprism, Hendecagonal-grand hendecagrammic duoprism, Small hendecagrammic-hendecagrammic duoprism, Small hendecagrammic-great hendecagrammic duoprism, Small hendecagrammic-grand hendecagrammic duoprism, Hendecagrammic-great hendecagrammic duoprism, Hendecagrammic-grand hendecagrammic duoprism, Great hendecagrammic-grand hendecagrammic duoprism |
---|
Abstract & topological properties |
---|
Flag count | 2904 |
---|
Euler characteristic | 0 |
---|
Orientable | Yes |
---|
Properties |
---|
Symmetry | I2(11)×I2(11), order 484 |
---|
Convex | No |
---|
Nature | Tame |
---|
The hendecagonal-great hendecagrammic duoprism, also known as the 11-11/4 duoprism, is a uniform duoprism that consists of 11 hendecagonal prisms and 11 great hendecagrammic prisms, with 2 of each at each vertex.
The coordinates of a hendecagonal-great hendecagrammic duoprism, centered at the origin and with edge length 4sin(π/11)sin(4π/11), are given by:
,
,
,
,
where j, k = 2, 4, 6, 8, 10.