Hendecagonal-small hendecagrammic duoprism

From Polytope Wiki
Jump to navigation Jump to search
Hendecagonal-small hendecagrammic duoprism
Rank4
TypeUniform
Notation
Coxeter diagramx11o x11/2o ()
Elements
Cells11 hendecagonal prisms, 11 small hendecagrammic prisms
Faces121 squares, 11 hendecagons, 11 small hendecagrams
Edges121+121
Vertices121
Vertex figureDigonal disphenoid, edge lengths 2cos(π/11) (base 1), 2cos(2π/11) (base 2), 2 (sides)
Measures (edge length 1)
Circumradius
Hypervolume
Dichoral anglesSishenp–11/2–sishenp:
 Henp–11–henp:
 Henp–4–sishenp: 90°
Central density2
Number of external pieces33
Level of complexity12
Related polytopes
ArmySemi-uniform handip
DualHendecagonal-small hendecagrammic duotegum
ConjugatesHendecagonal-hendecagrammic duoprism, Hendecagonal-great hendecagrammic duoprism, Hendecagonal-grand hendecagrammic duoprism, Small hendecagrammic-hendecagrammic duoprism, Small hendecagrammic-great hendecagrammic duoprism, Small hendecagrammic-grand hendecagrammic duoprism, Hendecagrammic-great hendecagrammic duoprism, Hendecagrammic-grand hendecagrammic duoprism, Great hendecagrammic-grand hendecagrammic duoprism
Abstract & topological properties
Flag count2904
Euler characteristic0
OrientableYes
Properties
SymmetryI2(11)×I2(11), order 484
ConvexNo
NatureTame

The hendecagonal-small hendecagrammic duoprism, also known as the 11-11/2 duoprism, is a uniform duoprism that consists of 11 hendecagonal prisms and 11 small hendecagrammic prisms, with 2 of each at each vertex.

Vertex coordinates[edit | edit source]

The coordinates of a hendecagonal-small hendecagrammic duoprism, centered at the origin and with edge length 2sin(2π/11), are given by:

  • ,
  • ,
  • ,
  • ,

where j = 2, 4, 6, 8, 10.

External links[edit | edit source]