# Hendecagonal antiditetragoltriate

Hendecagonal antiditetragoltriate
Rank4
TypeIsogonal
Notation
Elements
Cells121+121 tetragonal disphenoids, 242 rectangular pyramids, 22 hendecagonal prisms
Faces484+484 isosceles triangles, 242 rectangles, 22 hendecagons
Edges242+242+484
Vertices242
Vertex figureBiaugmented triangular prism
Measures (based on same duoprisms as optimized hendecagonal ditetragoltriate)
Edge lengthsEdges of smaller hendecagon (242): 1
Lacing edges (484): ${\displaystyle {\frac {\sqrt {\frac {2+\cos {\frac {\pi }{11}}+{\sqrt {2}}\sin {\frac {\pi }{11}}}{2}}}{\cos {\frac {\pi }{22}}}}\approx 1.30907}$
Edges of larger hendecagon (242): ${\displaystyle 1+{\sqrt {2}}\sin {\frac {\pi }{11}}\approx 1.39843}$
Circumradius${\displaystyle {\sqrt {\frac {1+{\frac {\sqrt {2}}{\sin {\frac {\pi }{11}}}}+{\frac {1}{\sin ^{2}{\frac {\pi }{11}}}}}{2}}}\approx 3.05110}$
Central density1
Related polytopes
It can be formed as the convex hull of 2 oppositely oriented semi-uniform hendecagonal duoprisms where the larger hendecagon is more than ${\displaystyle {\frac {1}{\cos {\frac {\pi }{11}}}}}$ times the edge length of the smaller one.