# Hendecagonal ditetragoltriate

Hendecagonal ditetragoltriate | |
---|---|

Rank | 4 |

Type | Isogonal |

Notation | |

Bowers style acronym | Hendet |

Elements | |

Cells | 121 rectangular trapezoprisms, 22 hendecagonal prisms |

Faces | 242 isosceles trapezoids, 242 rectangles, 22 hendecagons |

Edges | 121+242+242 |

Vertices | 242 |

Vertex figure | Notch |

Measures (based on variant with trapezoids with 3 unit edges) | |

Edge lengths | Edges of smaller hendecagon (242): 1 |

Lacing edges (121): 1 | |

Edges of larger hendecagon (242): | |

Circumradius | |

Central density | 1 |

Related polytopes | |

Army | Hendet |

Regiment | Hendet |

Dual | Hendecagonal tetrambitriate |

Abstract & topological properties | |

Euler characteristic | 0 |

Orientable | Yes |

Properties | |

Symmetry | I_{2}(11)≀S_{2}, order 968 |

Convex | Yes |

Nature | Tame |

The **hendecagonal ditetragoltriate** or **hendet** is a convex isogonal polychoron and the ninth member of the ditetragoltriate family. It consists of 22 hendecagonal prisms and 121 rectangular trapezoprisms. 2 hendecagonal prisms and 4 retangular trapezoprisms join at each vertex. However, it cannot be made uniform. It is the first in an infinite family of isogonal hendecagonal prismatic swirlchora.

It can be obtained as the convex hull of 2 similarly oriented semi-uniform hendecagonal duoprisms, one with a larger xy hendecagon and the other with a larger zw hendecagon.

Using the ratio method, the lowest possible ratio between the longest and shortest edges is 1: ≈ 1:1.39843. This value is also the ratio between the two sides of the two semi-uniform duoprisms.