Heptadecapedakon
Rank 16 Type Regular Space Spherical Notation Coxeter diagram x3o3o3o3o3o3o3o3o3o3o3o3o3o3o3o ( ) Schläfli symbol {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} Elements Pedaka 17 hexadecatedaka Tedaka 136 pentadecatradaka Tradaka 680 tetradecadoka Doka 2380 tridecahenda Henda 6188 dodecadaka Daka 12376 hendecaxenna Xenna 19448 decayotta Yotta 24310 enneazetta Zetta 24310 octaexa Exa 19448 heptapeta Peta 12376 hexatera Tera 6188 pentachora Cells 2380 tetrahedra Faces 680 triangles Edges 136 Vertices 17 Vertex figure Hexadecatedakon , edge length 1Measures (edge length 1) Circumradius
2
34
17
≈
0.68599
{\displaystyle \frac{2\sqrt{34}}{17} \approx 0.68599}
Inradius
34
136
≈
0.042875
{\displaystyle \frac{\sqrt{34}}{136} \approx 0.042875}
Hypervolume
17
5356234211328000
≈
7.6978
×
10
−
16
{\displaystyle \frac{\sqrt{17}}{5356234211328000} \approx 7.6978\times 10^{-16}}
Dihedral angle
arccos
(
1
16
)
≈
86.41668
∘
{\displaystyle \arccos\left(\frac{1}{16}\right) \approx 86.41668^\circ}
Height
34
8
≈
0.72887
{\displaystyle \frac{\sqrt{34}}{8} \approx 0.72887}
Central density 1 Number of external pieces 17 Level of complexity 1 Related polytopes Army Heptadecapedakon Regiment Heptadecapedakon Dual Heptadecapedakon Conjugate None Abstract & topological properties Flag count355687428096000 Euler characteristic 0 Orientable Yes Properties Symmetry A16 , order 355687428096000Convex Yes Nature Tame
The heptadecapedakon , also commonly called the 16-simplex , is the simplest possible non-degenerate polypedakon . The full symmetry version has 17 regular hexadecatedaka as facets, joining 3 to a tradakon and 16 to a vertex, and is one of the 3 regular polypedaka . It is the 16-dimensional simplex .
The vertices of a regular heptadecapedakon of edge length 1, centered at the origin, are given by:
(
±
1
2
,
−
3
6
,
−
6
12
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(\pm\frac{1}{2},\,-\frac{\sqrt{3}}{6},\,-\frac{\sqrt{6}}{12},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
3
3
,
−
6
12
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,\frac{\sqrt{3}}{3},\,-\frac{\sqrt{6}}{12},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
6
4
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,\frac{\sqrt{6}}{4},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
10
5
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,\frac{\sqrt{10}}{5},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
0
,
15
6
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,0,\,\frac{\sqrt{15}}{6},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
21
7
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{21}}{7},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
7
4
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt7}{4},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2
3
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac23,\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
3
5
10
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{3\sqrt5}{10},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
55
11
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{55}}{11},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
66
12
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{66}}{12},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
78
13
,
−
91
182
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{78}}{13},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
91
14
,
−
105
210
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{91}}{14},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
105
15
,
−
30
120
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{105}}{15},\,-\frac{\sqrt{30}}{120},\,-\frac{\sqrt{34}}{136}\right)}
.
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
30
8
,
−
34
136
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{30}}{8},\,-\frac{\sqrt{34}}{136}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2
34
17
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{2\sqrt{34}}{17}\right)}
.
Much simpler coordinates can be given in 17 dimensions , as all permutations of:
(
2
2
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
)
{\displaystyle \left(\frac{\sqrt2}{2},\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0\right)}
.