Heptadecapedakon

From Polytope Wiki
Jump to navigation Jump to search
Heptadecapedakon
16-simplex t0.svg
Rank16
TypeRegular
SpaceSpherical
Notation
Coxeter diagramx3o3o3o3o3o3o3o3o3o3o3o3o3o3o3o (CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{3,3,3,3,3,3,3,3,3,3,3,3,3,3,3}
Elements
Pedaka17 hexadecatedaka
Tedaka136 pentadecatradaka
Tradaka680 tetradecadoka
Doka2380 tridecahenda
Henda6188 dodecadaka
Daka12376 hendecaxenna
Xenna19448 decayotta
Yotta24310 enneazetta
Zetta24310 octaexa
Exa19448 heptapeta
Peta12376 hexatera
Tera6188 pentachora
Cells2380 tetrahedra
Faces680 triangles
Edges136
Vertices17
Vertex figureHexadecatedakon, edge length 1
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Dihedral angle
Height
Central density1
Number of external pieces17
Level of complexity1
Related polytopes
ArmyHeptadecapedakon
RegimentHeptadecapedakon
DualHeptadecapedakon
ConjugateNone
Abstract & topological properties
Flag count355687428096000
Euler characteristic0
OrientableYes
Properties
SymmetryA16, order 355687428096000
ConvexYes
NatureTame

The heptadecapedakon, also commonly called the 16-simplex, is the simplest possible non-degenerate polypedakon. The full symmetry version has 17 regular hexadecatedaka as facets, joining 3 to a tradakon and 16 to a vertex, and is one of the 3 regular polypedaka. It is the 16-dimensional simplex.

Vertex coordinates[edit | edit source]

The vertices of a regular heptadecapedakon of edge length 1, centered at the origin, are given by:

  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • .
  • ,
  • .

Much simpler coordinates can be given in 17 dimensions, as all permutations of:

  • .