Heptagonal-square antiprismatic duoprism

From Polytope Wiki
Jump to navigation Jump to search
Heptagonal-square antiprismatic duoprism
Rank5
TypeUniform
Notation
Bowers style acronymHesquap
Coxeter diagramx7o s2s8o
Elements
Tera7 square antiprismatic prisms, 8 triangular-heptagonal duoprisms, 2 square-heptagonal duoprisms
Cells56 triangular prisms, 14 cubes, 7 square antiprisms, 8+8 heptagonal prisms
Faces56 triangles, 14+56+56 squares, 8 heptagons
Edges56+56+56
Vertices56
Vertex figureIsosceles-trapezoidal scalene, edge lengths 1, 1, 1, 2 (base trapezoid), 2cos(π/7) (top), 2 (side edges)
Measures (edge length 1)
Circumradius
Hypervolume
Diteral anglesSquappip–squap–squappip:
 Theddip–hep–theddip: =
 Theddip–hep–squahedip: =
 Theddip–trip–squappip: 90°
 Squahedip–cube–squappip: 90°
 
Central density1
Number of external pieces17
Level of complexity40
Related polytopes
ArmyHesquap
RegimentHesquap
DualHeptagonal-square antitegmatic duotegum
ConjugatesHeptagrammic-square antiprismatic duoprism, Great heptagrammic-square antiprismatic duoprism
Abstract & topological properties
Euler characteristic2
OrientableYes
Properties
SymmetryI2(7)×I2(8)×A1+, order 224
ConvexYes
NatureTame

The heptagonal-square antiprismatic duoprism or hesquap is a convex uniform duoprism that consists of 7 square antiprismatic prisms, 2 square-heptagonal duoprisms, and 8 triangular-heptagonal duoprisms. Each vertex joins 2 square antiprismatic prisms, 3 triangular-heptagonal duoprisms, and 1 square-heptagonal duoprism.

Vertex coordinates[edit | edit source]

The vertices of a heptagonal-square antiprismatic duoprism of edge length 2sin(π/7) are given by:

where j = 2, 4, 6.

Representations[edit | edit source]

A heptagonal-square antiprismatic duoprism has the following Coxeter diagrams:

  • x7o s2s8o (full symmetry; square antiprisms as alternated octagonal prisms)
  • x7o s2s4s (square antiprisms as alternated ditetragonal prisms)