Hexadecatedakon

From Polytope Wiki
Jump to navigation Jump to search
Hexadecatedakon
15-simplex t0.svg
Rank15
TypeRegular
SpaceSpherical
Notation
Coxeter diagramx3o3o3o3o3o3o3o3o3o3o3o3o3o3o (CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{3,3,3,3,3,3,3,3,3,3,3,3,3,3}
Elements
Tedaka16 pentadecatradaka
Tradaka120 tetradecadoka
Doka560 tridecahenda
Henda1820 dodecadaka
Daka4368 hendecaxenna
Xenna8008 decayotta
Yotta11440 enneazetta
Zetta12870 octaexa
Exa11440 heptapeta
Peta8008 hexatera
Tera4368 pentachora
Cells1820 tetrahedra
Faces560 triangles
Edges120
Vertices16
Vertex figurePentadecatradakon, edge length 1
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Dihedral angle
Height
Central density1
Number of external pieces16
Level of complexity1
Related polytopes
ArmyHexadecatedakon
RegimentHexadecatedakon
DualHexadecatedakon
ConjugateNone
Abstract & topological properties
Flag count20922789888000
Euler characteristic2
OrientableYes
Properties
SymmetryA15, order 20922789888000
ConvexYes
NatureTame

The hexadecatedakon, also commonly called the 15-simplex, is the simplest possible non-degenerate polytedakon. The full symmetry version has 16 regular pentadecatradaka as facets, joining 3 to a dokon and 15 to a vertex, and is one of the 3 regular polytedaka. It is the 15-dimensional simplex.

A regular hexadecatedakon of edge length 22 can be inscribed in the unit pentadekeract.[1]

Vertex coordinates[edit | edit source]

The vertices of a regular hexadecatedakon of edge length 1, centered at the origin, are given by:

  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • .

Simpler sets of coordinates can be found by inscribing the hexadecatedakon into the pentadekeract. One such set is given by:

  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • .

Much simpler coordinates can be given in 16 dimensions, as all permutations of:

  • .

References[edit | edit source]

  1. Sloane, N. J. A. (ed.). "Sequence A019442". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.