Hexadecatedakon
Rank 15 Type Regular Space Spherical Notation Coxeter diagram x3o3o3o3o3o3o3o3o3o3o3o3o3o3o ( ) Schläfli symbol {3,3,3,3,3,3,3,3,3,3,3,3,3,3} Elements Tedaka 16 pentadecatradaka Tradaka 120 tetradecadoka Doka 560 tridecahenda Henda 1820 dodecadaka Daka 4368 hendecaxenna Xenna 8008 decayotta Yotta 11440 enneazetta Zetta 12870 octaexa Exa 11440 heptapeta Peta 8008 hexatera Tera 4368 pentachora Cells 1820 tetrahedra Faces 560 triangles Edges 120 Vertices 16 Vertex figure Pentadecatradakon , edge length 1Measures (edge length 1) Circumradius
30
8
≈
0.68465
{\displaystyle \frac{\sqrt{30}}{8} \approx 0.68465}
Inradius
30
120
≈
0.045644
{\displaystyle \frac{\sqrt{30}}{120} \approx 0.045644}
Hypervolume
2
83691159552000
≈
1.6898
×
10
−
14
{\displaystyle \frac{\sqrt2}{83691159552000} \approx 1.6898×10^{-14}}
Dihedral angle
arccos
(
1
15
)
≈
86.17745
°
{\displaystyle \arccos\left(\frac{1}{15}\right) \approx 86.17745°}
Height
2
30
15
≈
0.73030
{\displaystyle \frac{2\sqrt{30}}{15} \approx 0.73030}
Central density 1 Number of external pieces 16 Level of complexity 1 Related polytopes Army Hexadecatedakon Regiment Hexadecatedakon Dual Hexadecatedakon Conjugate None Abstract & topological properties Flag count20922789888000 Euler characteristic 2 Orientable Yes Properties Symmetry A15 , order 20922789888000Convex Yes Nature Tame
The hexadecatedakon , also commonly called the 15-simplex , is the simplest possible non-degenerate polytedakon . The full symmetry version has 16 regular pentadecatradaka as facets, joining 3 to a dokon and 15 to a vertex, and is one of the 3 regular polytedaka . It is the 15-dimensional simplex .
A regular hexadecatedakon of edge length 2√2 can be inscribed in the unit pentadekeract .[1]
The vertices of a regular hexadecatedakon of edge length 1, centered at the origin, are given by:
(
±
1
2
,
−
3
6
,
−
6
12
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(\pm\frac{1}{2},\,-\frac{\sqrt{3}}{6},\,-\frac{\sqrt{6}}{12},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
3
3
,
−
6
12
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,\frac{\sqrt{3}}{3},\,-\frac{\sqrt{6}}{12},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
6
4
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,0,\,\frac{\sqrt{6}}{4},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
10
5
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,0,\,0,\,\frac{\sqrt{10}}{5},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
0
,
15
6
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,0,\,0,\,0,\,\frac{\sqrt{15}}{6},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
21
7
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{21}}{7},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
7
4
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt7}{4},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2
3
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac23,\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
3
5
10
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{3\sqrt5}{10},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
55
11
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{55}}{11},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
66
12
,
−
78
156
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{66}}{12},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
78
13
,
−
91
182
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{78}}{13},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
91
14
,
−
105
210
,
−
30
120
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{91}}{14},\,-\frac{\sqrt{105}}{210},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
105
15
,
−
30
120
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{105}}{15},\,-\frac{\sqrt{30}}{120}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
30
8
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{30}}{8}\right)}
.
Simpler sets of coordinates can be found by inscribing the hexadecatedakon into the pentadekeract . One such set is given by:
(
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
)
{\displaystyle \left(\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8}\right)}
,
(
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
)
{\displaystyle \left(\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8}\right)}
,
(
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
)
{\displaystyle \left(\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8}\right)}
,
(
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
2
8
,
2
8
)
{\displaystyle \left(\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8}\right)}
,
(
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
)
{\displaystyle \left(\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8}\right)}
,
(
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
)
{\displaystyle \left(\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8}\right)}
,
(
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
)
{\displaystyle \left(\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8}\right)}
,
(
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
)
{\displaystyle \left(\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8}\right)}
,
(
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
)
{\displaystyle \left(-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8}\right)}
,
(
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
)
{\displaystyle \left(-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8}\right)}
,
(
−
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
)
{\displaystyle \left(-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8}\right)}
,
(
−
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
)
{\displaystyle \left(-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8}\right)}
,
(
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
)
{\displaystyle \left(-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8}\right)}
,
(
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
)
{\displaystyle \left(-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8}\right)}
,
(
−
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
)
{\displaystyle \left(-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8}\right)}
,
(
−
2
8
,
−
2
8
,
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
,
2
8
,
−
2
8
,
2
8
,
−
2
8
,
−
2
8
,
2
8
)
{\displaystyle \left(-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,-\frac{\sqrt2}{8},\,\frac{\sqrt2}{8}\right)}
.
Much simpler coordinates can be given in 16 dimensions , as all permutations of:
(
2
2
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
)
{\displaystyle \left(\frac{\sqrt2}{2},\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0\right)}
.