Hexafold dodecaswirlchoric symmetry
Jump to navigation
Jump to search
Hexafold dodecaswirlchoric symmetry | |
---|---|
Rank | 4 |
Space | Spherical |
Order | 720 |
Hexafold dodecaswirlchoric symmetry, also known as 3-swirldoic symmetry and notated H3●G2, H3+×12, or [5,3:3], is a 4D spherical symmetry group. It is the symmetry group of the uniform small swirlprismatic triacosihexecontitriacosihexecontachoron and small diacositetracontatriacosihexacontaswirlprismatic hecatonicosatriacosihexacontachoron.
Subgroups[edit | edit source]
This section is empty. You can help by adding to it. |
Convex polytopes with H3●G2 symmetry[edit | edit source]
- Antiwedged tri-hecatonicosadiminished rectified hexacosichoron (isogonal)/Tetragonal-antiwedge intersected tri-hecatonicosastellated joined hexacosichoron (isotopic)
- Bi-hecatonicosadiminished hecatonicosachoron (isogonal)/Bi-hecatonicosastellated hexacosichoron (isotopic)
- Gyrowedged tri-hecatonicosadiminished rectified hexacosichoron (isogonal)/Gyronotch intersected tri-hecatonicosastellated joined hexacosichoron (isotopic)
- Tri-hecatonicosadiminished hecatonicosachoron (isogonal)/Tri-hecatonicosastellated hexacosichoron (isotopic)
- Transitional 1-bitridodecahedral swirlprism (isogonal)/Transitional intersected 1-bitridodecahedral swirltegum (isotopic)
- Triangular 1-icosidodecahedral swirlprism (isogonal)/Triangular 1-icosidodecahedral swirltegum (isotopic)
Uniform polytopes with H3●G2 symmetry[edit | edit source]
- Small swirlprismatic triacosihexecontitriacosihexecontachoron
- Great swirlprismatic triacosihexecontitriacosihexecontachoron
- Small diacositetracontatriacosihexacontaswirlprismatic hecatonicosatriacosihexacontachoron
- Great diacositetracontatriacosihexacontaswirlprismatic hecatonicosatriacosihexacontachoron
External links[edit | edit source]
- Bowers, Jonathan. "Symmetries of Four Dimensions - Part 3" (#3-swirldoic).