Hexagonal antifastegium

From Polytope Wiki
Jump to navigation Jump to search
Hexagonal antifastegium
6g=gyro6p.png
Rank4
TypeSegmentotope
SpaceSpherical
Notation
Bowers style acronymHaf
Coxeter diagramox xo6ox&#x
Elements
Cells6 tetrahedra, 6 square pyramids, 1 hexagonal prism, 2 hexagonal antiprisms
Faces12+12+12 triangles, 6 squares, 1+2 hexagons
Edges6+6+12+24
Vertices6+12
Vertex figures6 wedges, edge lengths 3 (top) and 1 (remaining edges)
 12 isosceles trapezoidal pyramids, base edge lengths 1, 1, 1, 3, side edge lengths 1, 1, 2, 2
Measures (edge length 1)
Circumradius
Hypervolume
Dichoral anglesTet–3–squippy:
 Hip–4–squippy:
 Hap–3–tet:
 Hap–3–squippy:
 Hap–6–hap:
 Hip–6–hap:
HeightsHig atop hap:
 Hig atop gyro hip:
Central density1
Related polytopes
ArmyHaf
RegimentHaf
DualHexagonal antitegmatonotch
ConjugateHexagonal antifastegium
Abstract & topological properties
Euler characteristic0
OrientableYes
Properties
SymmetryG2×A1×I, order 24
ConvexYes
NatureTame


The hexagonal antifastegium, or haf, is a CRF segmentochoron (designated K-4.46 on Richard Klitzing's list). It consists of 1 hexagonal prism, 2 hexagonal antiprisms, 6 tetrahedra, and 6 square pyramids. It is a member of the infinite family of polygonal antifastegiums.

It is a segmentochoron between a hexagon and a hexagonal antiprism or between a hexagon and a gyro hexagonal prism.

Vertex coordinates[edit | edit source]

The vertices of a hexagonal antifastegium of edge length 1 are given by:

Representations[edit | edit source]

The hexagonal antifastegium can be represented by the following Coxeter diagrams:

  • ox xo6ox&#x
  • xoo6oxx&#x

External links[edit | edit source]

  • Klitzing, Richard. "haf".