The hexagonal double antiprismoid or hidiap is a convex isogonal polychoron and the fifth member of the double antiprismoid family. It consists of 24 hexagonal antiprisms , 144 tetragonal disphenoids , and 288 sphenoids . 2 hexagonal antiprisms, 4 tetragonal disphenoids, and 8 sphenoids join at each vertex. It can be obtained as the convex hull of two orthogonal hexagonal-hexagonal duoantiprisms or by alternating the dodecagonal ditetragoltriate . However, it cannot be made uniform. It is the first in an infinite family of isogonal hexagonal antiprismatic swirlchora .
Using the ratio method, the lowest possible ratio between the longest and shortest edges is 1:
11
+
4
3
−
41
+
24
3
8
{\displaystyle {\sqrt {\frac {11+4{\sqrt {3}}-{\sqrt {41+24{\sqrt {3}}}}}{8}}}}
≈ 1:1.05128. For this variant the edges of the hexagons of the inscribed duoantiprisms have ratio 1:
2
+
3
+
4
3
−
1
4
{\displaystyle {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{4}}}
≈ 1:1.54171. A variant with uniform hexagonal antiprisms also exists; this variant is based on a duoantiprism with hexagons with edge length ratio 1:
1
+
3
{\displaystyle {\sqrt {1+{\sqrt {3}}}}}
≈ 1:1.65289.
The vertices of a hexagonal double antiprismoid, assuming that the hexagonal antiprisms are regular of edge length 1, centered at the origin, are given by:
(
0
,
±
1
,
0
,
±
1
+
3
)
,
{\displaystyle \left(0,\,\pm 1,\,0,\,\pm {\sqrt {1+{\sqrt {3}}}}\right),}
(
0
,
±
1
,
±
3
+
3
3
2
,
±
1
+
3
2
)
,
{\displaystyle \left(0,\,\pm 1,\,\pm {\frac {\sqrt {3+3{\sqrt {3}}}}{2}},\,\pm {\frac {\sqrt {1+{\sqrt {3}}}}{2}}\right),}
(
±
3
2
,
±
1
2
,
0
,
±
1
+
3
)
,
{\displaystyle \left(\pm {\frac {\sqrt {3}}{2}},\,\pm {\frac {1}{2}},\,0,\,\pm {\sqrt {1+{\sqrt {3}}}}\right),}
(
±
3
2
,
±
1
2
,
±
3
+
3
3
2
,
±
1
+
3
2
)
,
{\displaystyle \left(\pm {\frac {\sqrt {3}}{2}},\,\pm {\frac {1}{2}},\,\pm {\frac {\sqrt {3+3{\sqrt {3}}}}{2}},\,\pm {\frac {\sqrt {1+{\sqrt {3}}}}{2}}\right),}
(
±
1
,
0
,
±
1
+
3
,
0
)
,
{\displaystyle \left(\pm 1,\,0,\,\pm {\sqrt {1+{\sqrt {3}}}},\,0\right),}
(
±
1
,
0
,
±
1
+
3
2
,
±
3
+
3
3
2
)
,
{\displaystyle \left(\pm 1,\,0,\,\pm {\frac {\sqrt {1+{\sqrt {3}}}}{2}},\,\pm {\frac {\sqrt {3+3{\sqrt {3}}}}{2}}\right),}
(
±
1
2
,
±
3
2
,
±
1
+
3
,
0
)
,
{\displaystyle \left(\pm {\frac {1}{2}},\,\pm {\frac {\sqrt {3}}{2}},\,\pm {\sqrt {1+{\sqrt {3}}}},\,0\right),}
(
±
1
2
,
±
3
2
,
±
1
+
3
2
,
±
3
+
3
3
2
)
,
{\displaystyle \left(\pm {\frac {1}{2}},\,\pm {\frac {\sqrt {3}}{2}},\,\pm {\frac {\sqrt {1+{\sqrt {3}}}}{2}},\,\pm {\frac {\sqrt {3+3{\sqrt {3}}}}{2}}\right),}
(
±
1
+
3
,
0
,
0
,
±
1
)
,
{\displaystyle \left(\pm {\sqrt {1+{\sqrt {3}}}},\,0,\,0,\,\pm 1\right),}
(
±
1
+
3
,
0
,
±
3
2
,
±
1
2
)
,
{\displaystyle \left(\pm {\sqrt {1+{\sqrt {3}}}},\,0,\,\pm {\frac {\sqrt {3}}{2}},\,\pm {\frac {1}{2}}\right),}
(
±
1
+
3
2
,
±
3
+
3
3
2
,
0
,
±
1
)
,
{\displaystyle \left(\pm {\frac {\sqrt {1+{\sqrt {3}}}}{2}},\,\pm {\frac {\sqrt {3+3{\sqrt {3}}}}{2}},\,0,\,\pm 1\right),}
(
±
1
+
3
2
,
±
3
+
3
3
2
,
±
3
2
,
±
1
2
)
,
{\displaystyle \left(\pm {\frac {\sqrt {1+{\sqrt {3}}}}{2}},\,\pm {\frac {\sqrt {3+3{\sqrt {3}}}}{2}},\,\pm {\frac {\sqrt {3}}{2}},\,\pm {\frac {1}{2}}\right),}
(
0
,
±
1
+
3
,
±
1
,
0
)
,
{\displaystyle \left(0,\,\pm {\sqrt {1+{\sqrt {3}}}},\,\pm 1,\,0\right),}
(
0
,
±
1
+
3
,
±
1
2
,
±
3
2
)
,
{\displaystyle \left(0,\,\pm {\sqrt {1+{\sqrt {3}}}},\,\pm {\frac {1}{2}},\,\pm {\frac {\sqrt {3}}{2}}\right),}
(
±
3
+
3
3
2
,
±
1
+
3
2
,
±
1
,
0
)
,
{\displaystyle \left(\pm {\frac {\sqrt {3+3{\sqrt {3}}}}{2}},\,\pm {\frac {\sqrt {1+{\sqrt {3}}}}{2}},\,\pm 1,\,0\right),}
(
±
3
+
3
3
2
,
±
1
+
3
2
,
±
1
2
,
±
3
2
)
.
{\displaystyle \left(\pm {\frac {\sqrt {3+3{\sqrt {3}}}}{2}},\,\pm {\frac {\sqrt {1+{\sqrt {3}}}}{2}},\,\pm {\frac {1}{2}},\,\pm {\frac {\sqrt {3}}{2}}\right).}
An alternate set of coordinates, assuming that the edge length differences are minimized, centered at the origin, are given by:
(
0
,
±
1
,
0
,
±
2
+
3
+
4
3
−
1
4
)
,
{\displaystyle \left(0,\,\pm 1,\,0,\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{4}}\right),}
(
0
,
±
1
,
±
3
+
2
3
+
12
3
−
3
8
,
±
2
+
3
+
4
3
−
1
8
)
,
{\displaystyle \left(0,\,\pm 1,\,\pm {\frac {3+2{\sqrt {3}}+{\sqrt {12{\sqrt {3}}-3}}}{8}},\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{8}}\right),}
(
±
3
2
,
±
1
2
,
0
,
±
2
+
3
+
4
3
−
1
4
)
,
{\displaystyle \left(\pm {\frac {\sqrt {3}}{2}},\,\pm {\frac {1}{2}},\,0,\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{4}}\right),}
(
±
3
2
,
±
1
2
,
±
3
+
2
3
+
12
3
−
3
8
,
±
2
+
3
+
4
3
−
1
8
)
,
{\displaystyle \left(\pm {\frac {\sqrt {3}}{2}},\,\pm {\frac {1}{2}},\,\pm {\frac {3+2{\sqrt {3}}+{\sqrt {12{\sqrt {3}}-3}}}{8}},\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{8}}\right),}
(
±
1
,
0
,
±
2
+
3
+
4
3
−
1
4
,
0
)
,
{\displaystyle \left(\pm 1,\,0,\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{4}},\,0\right),}
(
±
1
,
0
,
±
2
+
3
+
4
3
−
1
8
,
±
3
+
2
3
+
12
3
−
3
8
)
,
{\displaystyle \left(\pm 1,\,0,\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{8}},\,\pm {\frac {3+2{\sqrt {3}}+{\sqrt {12{\sqrt {3}}-3}}}{8}}\right),}
(
±
1
2
,
±
3
2
,
±
2
+
3
+
4
3
−
1
4
,
0
)
,
{\displaystyle \left(\pm {\frac {1}{2}},\,\pm {\frac {\sqrt {3}}{2}},\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{4}},\,0\right),}
(
±
1
2
,
±
3
2
,
±
2
+
3
+
4
3
−
1
8
,
±
3
+
2
3
+
12
3
−
3
8
)
,
{\displaystyle \left(\pm {\frac {1}{2}},\,\pm {\frac {\sqrt {3}}{2}},\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{8}},\,\pm {\frac {3+2{\sqrt {3}}+{\sqrt {12{\sqrt {3}}-3}}}{8}}\right),}
(
±
2
+
3
+
4
3
−
1
4
,
0
,
0
,
±
1
)
,
{\displaystyle \left(\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{4}},\,0,\,0,\,\pm 1\right),}
(
±
2
+
3
+
4
3
−
1
4
,
0
,
±
3
2
,
±
1
2
)
,
{\displaystyle \left(\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{4}},\,0,\,\pm {\frac {\sqrt {3}}{2}},\,\pm {\frac {1}{2}}\right),}
(
±
2
+
3
+
4
3
−
1
8
,
±
3
+
2
3
+
12
3
−
3
8
,
0
,
±
1
)
,
{\displaystyle \left(\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{8}},\,\pm {\frac {3+2{\sqrt {3}}+{\sqrt {12{\sqrt {3}}-3}}}{8}},\,0,\,\pm 1\right),}
(
±
2
+
3
+
4
3
−
1
8
,
±
3
+
2
3
+
12
3
−
3
8
,
±
3
2
,
±
1
2
)
,
{\displaystyle \left(\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{8}},\,\pm {\frac {3+2{\sqrt {3}}+{\sqrt {12{\sqrt {3}}-3}}}{8}},\,\pm {\frac {\sqrt {3}}{2}},\,\pm {\frac {1}{2}}\right),}
(
0
,
±
2
+
3
+
4
3
−
1
4
,
±
1
,
0
)
,
{\displaystyle \left(0,\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{4}},\,\pm 1,\,0\right),}
(
0
,
±
2
+
3
+
4
3
−
1
4
,
±
1
2
,
±
3
2
)
,
{\displaystyle \left(0,\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{4}},\,\pm {\frac {1}{2}},\,\pm {\frac {\sqrt {3}}{2}}\right),}
(
±
3
+
2
3
+
12
3
−
3
8
,
±
2
+
3
+
4
3
−
1
8
,
±
1
,
0
)
,
{\displaystyle \left(\pm {\frac {3+2{\sqrt {3}}+{\sqrt {12{\sqrt {3}}-3}}}{8}},\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{8}},\,\pm 1,\,0\right),}
(
±
3
+
2
3
+
12
3
−
3
8
,
±
2
+
3
+
4
3
−
1
8
,
±
1
2
,
±
3
2
)
.
{\displaystyle \left(\pm {\frac {3+2{\sqrt {3}}+{\sqrt {12{\sqrt {3}}-3}}}{8}},\,\pm {\frac {2+{\sqrt {3}}+{\sqrt {4{\sqrt {3}}-1}}}{8}},\,\pm {\frac {1}{2}},\,\pm {\frac {\sqrt {3}}{2}}\right).}