Icositetrachoric symmetry
Jump to navigation
Jump to search
Icositetrachoric symmetry | |
---|---|
Rank | 4 |
Space | Spherical |
Order | 1152 |
Info | |
Coxeter diagram | |
Elements | |
Axes | 24+24 B3 96+96 A2×A1 |
Related polytopes | |
Omnitruncate | Great disprismatoicositetricositetrachoron |
Icositetrachoric symmetry, also known as icoic symmetry and notated as F4, is a 4D spherical Coxeter group. It is the symmetry group of the regular icositetrachoron.
Subgroups[edit | edit source]
This section needs expansion. You can help by adding to it. |
Convex polytopes with F4 symmetry[edit | edit source]
- Icositetrachoron (regular)
- Rectified icositetrachoron (isogonal)/Joined icositetrachoron (isotopic)
- Truncated icositetrachoron (isogonal)/Octakis icositetrachoron (isotopic)
- Icositetricositetrachoron (isogonal)/Disphenoidal diacosioctacontoctachoron (isotopic)
- Small rhombated icositetrachoron (isogonal)/Notched diacosioctacontoctachoron (isotopic)
- Great rhombated icositetrachoron (isogonal)/Sphenoidal pentacosiheptacontahexachoron (isotopic)
- Small disprismatoicositetricositetrachoron (isogonal)/Square-antitegmatic hecatontetracontatetrachoron (isotopic)
- Prismatorhombated icositetrachoron (isogonal)/Deltopyramidal pentacosiheptacontahexachoron (isotopic)
- Great disprismatoicositetricositetrachoron (isogonal)/Tetrahedral chiliahecatonpentacontadichoron (isotopic)
External links[edit | edit source]
- Wikipedia contributors. "F4 (mathematics)".