List of noble polyhedra
Jump to navigation
Jump to search

A visual index of noble polyhedra sorted by convex hull types. The purple lines connect dual pairs, the purple polyhedra are self-dual, the magenta polyhedron is dual to its enantiomorph. The tetragonal disphenoid and the rhombic disphenoid are variants of the regular tetrahedron. The bottom row represents the stephanoid infinite family.
Besides the tetragonal disphenoid, rhombic disphenoid and the infinite family of crown polyhedra, there are 94 known non-exotic noble polyhedra, 9 of which are regular and 2 of which are fissary:
Tetrahedral symmetry[edit | edit source]
There exists only one noble polyhedron with tetrahedral symmetry: the tetrahedron. There do not exist noble polyhedra with chiral tetrahedral or pyritohedral symmetry.
Name | Convex hull | Faces | Edges | Vertices | Dual | Minimal ratio | Notes |
---|---|---|---|---|---|---|---|
Tetrahedron | Tetrahedron | 4 triangles | 6 | 4 | Tetrahedron | 1:1 | Regular, self-dual |
Octahedral symmetry[edit | edit source]
Chiral octahedral symmetry[edit | edit source]
Icosahedral symmetry[edit | edit source]
There are two other noble polyhedra with this symmetry not listed in the above table. They are both in the grid army.
Chiral icosahedral symmetry[edit | edit source]
There are a further 8 noble polyhedra with this symmetry not listed in the above table.
Noble polyhedra that are nonregular and nonprismatic sorted by Schlälfi types[edit | edit source]
Bibliography[edit | edit source]
- Hess, Edmund (1876). Über die Zugleich Gleicheckigen und Gleichflächigen Polyeder. Kassel.
- Brückner, Max (1906). Über die Gleicheckig-Gleichflächigen Diskontinuierlichen und Nichtkonvexen Polyeder. Halle.
- Wenninger, Magnus (1971). Polyhedron Models. Cambridge University Press. ISBN 978-0-511-56974-6.
- Grünbaum, Branko (1993). "Polyhedra With Hollow Faces (Proc. NATO - ASI Conference)". In Bisztriczky, T.; et al. (eds.). POLYTOPES: Abstract, Convex and Computational. Toronto: Kluwer Acad. Publ. pp. 43–70. ISBN 978-94-010-4398-4.
- Grünbaum, Branko (2003). Discrete and Computational Geometry: The Goodman-Pollack Festschrift. New York: Springer. pp. 461–488.
- Brückner, Max; Stratton, R.; Mikloweit, Ulrich (2009). Concerning the Isogonal-Isohedral, Discontinuous and Nonconvex Polyhedra. Colorado Springs. ISBN 978-0-692-00323-7. (Translation of Max Brückner's work)
- Webb, Robert (2008). "Noble Faceting of Snub Cube". Stella.
- Mikloweit, Ulrich (2020). "Exploring Noble Polyhedra With the Program Stella4D" (PDF). Bridges 2020 Conference Proceedings. Helsinki and Espoo, Finland. 25: 257–264. ISBN 9781938664366.