Möbius-Kantor configuration
Jump to navigation
Jump to search
Möbius-Kantor configuration | |
---|---|
Rank | 2 |
Type | Regular |
Elements | |
Edges | 8 triads |
Vertices | 8 |
Vertex figure | Triad |
Related polytopes | |
Dual | Möbius-Kantor configuration |
Abstract & topological properties | |
Euler characteristic | 0 |
Configuration symbol | (83) |
The Möbius-Kantor configuration is a exotic polygonoid and 3-configuration. It has 8 triads and 8 vertices, with a triadic vertex figure. The Möbius-Kantor configuration cannot be realized in Euclidean space with straight edges. It can however be realized complex projective space.
Related polytopes[edit | edit source]
The Möbius-Kantor configuration is closely related to the Möbius-Kantor polygon, a complex polygon. The two have the same abstract structure.
Gallery[edit | edit source]
-
The Möbius-Kantor graph, the incidence graph of the Möbius-Kantor configuration
-
The Möbius-Kantor configuration realized in Euclidean space with 7 straight edges. Since the Möbius-Kantor configuration cannot be realized in Euclidean space with only straight edges, this is the most straight edges possible.
External links[edit | edit source]
- Wikipedia contributors. "Möbius-Kantor configuration".
- Weisstein, Eric W. "Möbius-Kantor Configuration" at MathWorld.
References[edit | edit source]
- ↑ Coxeter (1950:429)
Bibliography[edit | edit source]
- Coxeter, Harold (1950), "Self-dual configurations and regular graphs" (PDF), Bulletin of the American Mathematical Society, 56 (5): 427–431, doi:10.1090/S0002-9904-1950-09407-5, MR 0038078