# Metagyrate diminished rhombicosidodecahedron

Metagyrate diminished rhombicosidodecahedron Rank3
TypeCRF
SpaceSpherical
Notation
Bowers style acronymMagydrid
Elements
Faces3×1+6×2 triangles, 3×1+11×2 squares, 3×1+4×2 pentagons, 1 decagon
Edges7×1+49×2
Vertices3×1+26×2
Vertex figures5+30 isosceles trapezoids, edge length 1, 2, (1+5)/2, 2
10 scalene triangles, edge lengths 2, (1+5)/2, (5+5)/2
10 irregular tetragons, edge lengths 1, 2, 2, (1+5)/2
Measures (edge length 1)
Circumradius$\frac{\sqrt{11+4\sqrt5}}{2} ≈ 2.23295$ Volume$\frac{115+54\sqrt5}{6} ≈ 39.29128$ Dihedral angles3–4: $\arccos\left(-\frac{\sqrt3+\sqrt{15}}{6}\right) ≈ 159.09484°$ 3–5: $\arccos\left(-\sqrt{\frac{65-2\sqrt5}{75}}\right) ≈ 153.94242°$ 4–4: $\arccos\left(-\frac{2\sqrt5}{5}\right) ≈ 153.43495°$ 4–5: $\arccos\left(-\sqrt{\frac{5+\sqrt5}{10}}\right) ≈ 148.28253°$ 4–10: $\arccos\left(-\sqrt{\frac{5-\sqrt5}{10}}\right) ≈ 121.71747°$ 5–10: $\arccos\left(-\frac{\sqrt5}{5}\right) ≈ 116.56505°$ Central density1
Related polytopes
ArmyMagydrid
RegimentMagydrid
ConjugateMetagyrate replenished quasirhombicosidodecahedron
Abstract & topological properties
Euler characteristic2
SurfaceSphere
OrientableYes
Genus0
Properties
SymmetryA1×I×I, order 2
ConvexYes
NatureTame

The metagyrate diminished rhombicosidodecahedron is one of the 92 Johnson solids (J78). It consists of 3×1+6×2 triangles, 3×1+11×2 squares, 3×1+4×2 pentagons, and 1 decagon. It can be constructed by removing one of the pentagonal cupolaic caps of the small rhombicosidodecahedron, and rotating another non-opposite cap by 36°.

## Vertex coordinates

A metagyrate diminished rhombicosidodecahedron of edge length 1 has vertices given by:

• $\left(±\frac{5+\sqrt5}{4},\,0,\,±\frac{3+\sqrt5}{4}\right),$ • $\left(0,\,±\frac{3+\sqrt5}{4},\,-\frac{5+\sqrt5}{4}\right),$ • $\left(±\frac{3+\sqrt5}{4},\,±\frac{5+\sqrt5}{4},\,0\right),$ • $\left(±\frac12,\,±\frac12,\,±\frac{2+\sqrt5}{2}\right),$ • $\left(±\frac{2+\sqrt5}{2},\,±\frac12,\,±\frac12\right),$ • $\left(±\frac12,\,±\frac{2+\sqrt5}{2},\,-\frac12\right),$ • $\left(±\frac{3+\sqrt5}{4},\,±\frac{1+\sqrt5}{4},\,±\frac{1+\sqrt5}{2}\right),$ • $\left(±\frac{1+\sqrt5}{2},\,±\frac{3+\sqrt5}{4},\,±\frac{1+\sqrt5}{4}\right),$ • $\left(±\frac{1+\sqrt5}{4},\,±\frac{1+\sqrt5}{2},\,-\frac{3+\sqrt5}{4}\right),$ • $\left(±\frac12,\,-\frac{5+4\sqrt5}{10},\,\frac{10+3\sqrt5}{10}\right),$ • $\left(±\frac{1+\sqrt5}{4},\,-\frac{5+2\sqrt5}{5},\,\frac{15+\sqrt5}{20}\right),$ • $\left(0,\,-\frac{15+13\sqrt5}{20},\,\frac{5+\sqrt5}{20}\right).$ 