Octagonal tegum
Jump to navigation
Jump to search
Octagonal tegum | |
---|---|
![]() | |
Rank | 3 |
Type | Uniform dual |
Space | Spherical |
Notation | |
Bowers style acronym | Ot |
Coxeter diagram | m2m8o |
Elements | |
Faces | 16 isosceles triangles |
Edges | 8+16 |
Vertices | 2+8 |
Vertex figure | 2 octagons, 8 squares |
Measures (edge length 1) | |
Dihedral angle | |
Central density | 1 |
Related polytopes | |
Army | Ot |
Regiment | Ot |
Dual | Octagonal prism |
Conjugate | Octagrammic tegum |
Abstract & topological properties | |
Euler characteristic | 2 |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | I2(8)×A1, order 32 |
Convex | Yes |
Nature | Tame |
The octagonal tegum or ot, also called an octagonal bipyramid, is a tegum with an octagon as the midsection, constructed as the dual of an octagonal prism. It has 16 isosceles triangles as faces, with 2 order–8 and 8 order–4 vertices.
In the variant obtained as the dual of a uniform octagonal prism, the side edges are times the length of the edges of the base octagon. Each face has apex angle and base angles . If the base octagon has edge length 1, its height is .
External links[edit | edit source]
- Wikipedia Contributors. "Octagonal bipyramid".
- Hi.gher.Space Wiki Contributors. "Octagonal bipyramid".
- McCooey, David. "Octagonal Dipyramid"