Octagrammic duoprism

From Polytope Wiki
Jump to navigation Jump to search
Octagrammic duoprism
8-3-8-3 duoprism.png
Rank4
TypeUniform
SpaceSpherical
Notation
Bowers style acronymStodip
Coxeter diagramx8/3o x8/3o (CDel node 1.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel node.png)
Elements
Cells16 octagrammic prisms
Faces64 squares, 16 octagrams
Edges128
Vertices64
Vertex figureTetragonal disphenoid, edge lengths 2–2 (bases) and 2 (sides)
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Dichoral anglesStop–4–stop: 90°
 Stop–8/3–stop: 45°
Central density9
Number of external pieces32
Level of complexity12
Related polytopes
ArmyOdip
RegimentStodip
DualOctagrammic duotegum
ConjugateOctagonal duoprism
Abstract & topological properties
Euler characteristic0
OrientableYes
Properties
SymmetryI2(8)≀S2, order 512
ConvexNo
NatureTame

The octagrammic duoprism or stodip, also known as the octagrammic-octagrammic duoprism, the 8/3 duoprism or the 8/3-8/3 duoprism, is a noble uniform duoprism that consists of 16 octagrammic prisms, with 4 meeting at each vertex.

The octagrammic duoprism can be vertex-inscribed into a sphenoverted tesseractitesseractihexadecachoron or great distetracontoctachoron.

Vertex coordinates[edit | edit source]

The vertices of an octagrammic duoprism, centered at the origin and with unit edge length, are given by:

External links[edit | edit source]