# Octagrammic duoprism

Octagrammic duoprism Rank4
TypeUniform
SpaceSpherical
Notation
Bowers style acronymStodip
Coxeter diagramx8/3o x8/3o (           )
Elements
Cells16 octagrammic prisms
Faces64 squares, 16 octagrams
Edges128
Vertices64
Vertex figureTetragonal disphenoid, edge lengths 2–2 (bases) and 2 (sides)
Measures (edge length 1)
Circumradius$\sqrt{2-\sqrt2} ≈ 0.76537$ Inradius$\frac{\sqrt2-1}{2} ≈ 0.20711$ Hypervolume$4(3-2\sqrt2) ≈ 0.68629$ Dichoral anglesStop–4–stop: 90°
Stop–8/3–stop: 45°
Central density9
Number of external pieces32
Level of complexity12
Related polytopes
ArmyOdip
RegimentStodip
DualOctagrammic duotegum
ConjugateOctagonal duoprism
Abstract & topological properties
Euler characteristic0
OrientableYes
Properties
SymmetryI2(8)≀S2, order 512
ConvexNo
NatureTame

The octagrammic duoprism or stodip, also known as the octagrammic-octagrammic duoprism, the 8/3 duoprism or the 8/3-8/3 duoprism, is a noble uniform duoprism that consists of 16 octagrammic prisms, with 4 meeting at each vertex.

The octagrammic duoprism can be vertex-inscribed into a sphenoverted tesseractitesseractihexadecachoron or great distetracontoctachoron.

## Vertex coordinates

The vertices of an octagrammic duoprism, centered at the origin and with unit edge length, are given by:

• $\left(±\frac12,\,±\frac{\sqrt2-1}{2},\,±\frac12,\,±\frac{\sqrt2-1}{2}\right),$ • $\left(±\frac12,\,±\frac{\sqrt2-1}{2},\,±\frac{\sqrt2-1}{2},\,±\frac12\right),$ • $\left(±\frac{\sqrt2-1}{2},\,±\frac12,\,±\frac12,\,±\frac{\sqrt2-1}{2}\right),$ • $\left(±\frac{\sqrt2-1}{2},\,±\frac12,\,±\frac{\sqrt2-1}{2},\,±\frac12\right).$ 