Octahedral honeycomb

From Polytope Wiki
Jump to navigation Jump to search
Octahedral honeycomb
H3 344 CC center.png
Rank4
TypeRegular, paracompact
SpaceHyperbolic
Notation
Bowers style acronymOcth
Coxeter diagramo4o4o3x (CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png)
Schläfli symbol{3,4,4}
Elements
CellsNM octahedra
Faces4NM triangles
Edges3NM
Vertices6N
Vertex figureSquare tiling, edge length 1
Measures (edge length 1)
Circumradius0
Related polytopes
ArmyOcth
RegimentOcth
DualSquare tiling honeycomb
Abstract & topological properties
OrientableYes
Properties
Symmetry[4,4,3]
ConvexYes

The order-4 octahedral honeycomb, or just octahedral honeycomb, is a paracompact regular tiling of 3D hyperbolic space. 4 ideal octahedra meet at each edge. All vertices are ideal points at infinity, with infinitely many octahedra meeting at each vertex in a square tiling arrangement.

Representations[edit | edit source]

The octahedral honeycomb has the following Coxeter diagrams:

  • o4o4o3x (full symmetry)
  • o4o4o *b3x (octahedra of two types)
  • o3x3o4o4*a (octahedra of three types, x4o4x verf)

Related polytopes[edit | edit source]

o4o4o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Square tiling honeycomb squah {4,4,3} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
H3 443 FC boundary.png
Truncated square tiling honeycomb tisquah t{4,4,3} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
H3 443-1100.png
Rectified square tiling honeycomb risquah r{4,4,3} CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
H3 443 boundary 0100.png
Octahedral-square tiling honeycomb osquah 2t{4,4,3} CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
H3 443-0110.png
Rectified octahedral honeycomb rocth r{3,4,4} CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
H3 344 CC center 0100.png
Truncated octahedral honeycomb tocth t{3,4,4} CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
H3 443-0011.png
Octahedral honeycomb octh {3,4,4} CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
H3 344 CC center.png
Small rhombated square tiling honeycomb srisquah rr{4,4,3} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
H3 443-1010.png
Great rhombated square tiling honeycomb grisquah tr{4,4,3} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
H3 443-1110.png
Small rhombated octahedral honeycomb srocth rr{3,4,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
H3 443-0101.png
Great rhombated octahedral honeycomb grocth tr{3,4,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
H3 443-0111.png
Small prismated square tiling honeycomb sidposquah t0,3{4,4,3} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
H3 443-1001.png
Prismatorhombated octahedral honeycomb procth t0,1,3{4,4,3} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
H3 443-1101.png
Prismatorhombated square tiling honeycomb prisquah t0,1,3{3,4,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
H3 443-1011.png
Great prismated square tiling honeycomb gidposquah t0,1,2,3{4,4,3} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png
H3 443-1111.png


External links[edit | edit source]