Octeract

From Polytope Wiki
Jump to navigation Jump to search
Octeract
8-cube.svg
Rank8
TypeRegular
SpaceSpherical
Notation
Bowers style acronymOcto
Coxeter diagramx4o3o3o3o3o3o3o (CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{4,3,3,3,3,3,3}
Tapertopic notation11111111
Toratopic notationIIIIIIII
Bracket notation[IIIIIIII]
Elements
Zetta16 hepteracts
Exa112 hexeracts
Peta448 penteracts
Tera1120 tesseracts
Cells1792 cubes
Faces1792 squares
Edges1024
Vertices256
Vertex figureOctaexon, edge length 2
Measures (edge length 1)
Circumradius
Inradius
Hypervolume1
Dizettal angle90º
Height1
Central density1
Number of pieces16
Level of complexity1
Related polytopes
ArmyOcto
RegimentOcto
DualDiacosipentacontahexazetton
ConjugateNone
Abstract properties
Net count2642657228[1]
Euler characteristic0
Topological properties
OrientableYes
Properties
SymmetryB8, order 10321920
ConvexYes
NatureTame

The octeract, or octo, also called the 8-cube, or hexadecazetton, is one of the 3 regular polyzetta. It has 16 hepteracts as facets, joining 8 to a vertex.

It is the 8-dimensional hypercube. It is a tesseractic duoprism and square tetraprism.

It can be alternated into a demiocteract, which is uniform.

Vertex coordinates[edit | edit source]

The vertices of an octeract of edge length 1, centered at the origin, are given by:

Representations[edit | edit source]

An octeract has the following Coxeter diarams:

  • x4o3o3o3o3o3o3o (full symmetry)
  • x x4o3o3o3o3o3o (hepteractic prism)
  • xx4oo3oo3oo3oo3oo3oo&#x (B7 axial, hepteract atop hepteract)
  • x4o3o3o x4o3o3o (tesseractic duoprism)

External links[edit | edit source]

References[edit | edit source]

  1. "A091159". The On-line Encyclopedia of Integer Sequences. Retrieved 2022-12-07.