Order-∞ apeirogonal tiling
Jump to navigation
Jump to search
Order-∞ apeirogonal tiling | |
---|---|
![]() | |
Rank | 3 |
Type | Regular, paracompact |
Space | Hyperbolic |
Notation | |
Bowers style acronym | Azazat |
Coxeter diagram | x∞o∞o (![]() ![]() ![]() ![]() ![]() |
Schläfli symbol | {∞,∞} |
Elements | |
Faces | 2N apeirogons |
Edges | NM |
Vertices | 2N |
Vertex figure | Apeirogon, edge length 2 |
Measures (edge length 1) | |
Circumradius | |
Related polytopes | |
Army | Azazat |
Regiment | Azazat |
Dual | Order-∞ apeirogonal tiling |
Topological properties | |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | [∞,∞] |
Convex | Yes |
The order-∞ apeirogonal tiling or infinite-order apeirogonal tiling is a paracompact regular tiling of the hyperbolic plane. Infinitely many apeirogons join at each vertex. It is self-dual.
Representations[edit | edit source]
The order-∞ apeirogonal tiling has the following Coxeter diagrams:
- x∞o∞o (full symmetry)
- x∞o∞o∞*a (apeirogons of two types) (
)
Related polytopes[edit | edit source]
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Order-∞ apeirogonal tiling | azazat | {∞,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-∞ apeirogonal tiling = Apeirogonal tiling | azat | t{∞,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Apeiroapeirogonal tiling = Order-4 apeirogonal tiling | squazat | r{∞,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-∞ apeirogonal tiling = Apeirogonal tiling | azat | t{∞,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Order-∞ apeirogonal tiling | azazat | {∞,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Small rhombiapeiroapeirogonal tiling = Tetraapeirogonal tiling | tezt | rr{∞,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Great rhombiapeiroapeirogonal tiling = Truncated order-4 apeirogonal tiling | tosquazat | tr{∞,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Snub apeiroapeirogonal tiling | sr{∞,∞} | ![]() ![]() ![]() ![]() ![]() |
External links[edit | edit source]
- Klitzing, Richard. "azazat".
- Wikipedia Contributors. "Infinite-order apeirogonal tiling".