Order-∞ hexagonal tiling
Jump to navigation
Jump to search
Order-∞ hexagonal tiling | |
---|---|
![]() | |
Rank | 3 |
Type | Regular, paracompact |
Space | Hyperbolic |
Notation | |
Bowers style acronym | Azhexat |
Coxeter diagram | o∞o6x (![]() ![]() ![]() ![]() ![]() |
Schläfli symbol | {6,∞} |
Elements | |
Faces | NM hexagons |
Edges | 3NM |
Vertices | 6N |
Vertex figure | Apeirogon, edge length √3 |
Measures (edge length 1) | |
Circumradius | |
Related polytopes | |
Army | Azhexat |
Regiment | Azhexat |
Dual | Order-6 apeirogonal tiling |
Topological properties | |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | [∞,6] |
Convex | Yes |
The order-∞ hexagonal tiling or infinite-order hexagonal tiling is a paracompact regular tiling of the hyperbolic plane. Infinitely many ideal hexagons join at each vertex. All vertices are ideal points at infinity.
Representations[edit | edit source]
An order–∞ hexagonal tiling has the following Coxeter diagrams:
- o∞o6x (full symmetry)
- o6x6o∞*a (hexagons of two types)
Related polytopes[edit | edit source]
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Order-6 apeirogonal tiling | hazat | {∞,6} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-6 apeirogonal tiling | thazat | t{∞,6} | ![]() ![]() ![]() ![]() ![]() |
|
Hexaapeirogonal tiling | hazt | r{∞,6} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-∞ hexagonal tiling | tazhat | t{6,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Order-∞ hexagonal tiling | azhat | {6,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Small rhombihexaapeirogonal tiling | srohazt | rr{∞,6} | ![]() ![]() ![]() ![]() ![]() |
|
Great rhombihexaapeirogonal tiling | grohazt | tr{∞,6} | ![]() ![]() ![]() ![]() ![]() |
|
Snub hexaapeirogonal tiling | sr{∞,6} | ![]() ![]() ![]() ![]() ![]() |
External links[edit | edit source]
- Wikipedia Contributors. "Infinite-order hexagonal tiling".