Order-∞ pentagonal tiling
Jump to navigation
Jump to search
Order-∞ pentagonal tiling | |
---|---|
![]() | |
Rank | 3 |
Type | Regular, paracompact |
Space | Hyperbolic |
Notation | |
Bowers style acronym | Azpat |
Coxeter diagram | o∞o5x (![]() ![]() ![]() ![]() ![]() |
Schläfli symbol | {5,∞} |
Elements | |
Faces | 2NM pentagons |
Edges | 5NM |
Vertices | 10N |
Vertex figure | Apeirogon, edge length (1+√5)/2 |
Measures (edge length 1) | |
Circumradius | |
Related polytopes | |
Army | Azpat |
Regiment | Azpat |
Dual | Order-5 apeirogonal tiling |
Topological properties | |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | [∞,5] |
Convex | Yes |
The order-∞ pentagonal tiling or infinite-order pentagonal tiling is a paracompact regular tiling of the hyperbolic plane. Infinitely many ideal pentagons join at each vertex. All vertices are ideal points at infinity.
Representations[edit | edit source]
An order–∞ pentagonal tiling has the following Coxeter diagrams:
- o∞o5x (full symmetry)
- o5x5o∞*a (pentagons of two types)
Related polytopes[edit | edit source]
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Order-5 apeirogonal tiling | pazat | {∞,5} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-5 apeirogonal tiling | topazat | t{∞,5} | ![]() ![]() ![]() ![]() ![]() |
|
Pentaapeirogonal tiling | pazt | r{∞,5} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-∞ pentagonal tiling | tazpat | t{5,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Order-∞ pentagonal tiling | azpat | {5,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Small rhombipentaapeirogonal tiling | sropazt | rr{∞,5} | ![]() ![]() ![]() ![]() ![]() |
|
Great rhombipentaapeirogonal tiling | gropazt | tr{∞,5} | ![]() ![]() ![]() ![]() ![]() |
|
Snub pentaapeirogonal tiling | sr{∞,5} | ![]() ![]() ![]() ![]() ![]() |
External links[edit | edit source]
- Wikipedia Contributors. "Infinite-order pentagonal tiling".