Order-∞ triangular tiling
Jump to navigation
Jump to search
Order-∞ triangular tiling | |
---|---|
![]() | |
Rank | 3 |
Type | Regular, paracompact |
Space | Hyperbolic |
Notation | |
Bowers style acronym | Aztrat |
Coxeter diagram | o∞o3x (![]() ![]() ![]() ![]() ![]() |
Schläfli symbol | {3,∞} |
Elements | |
Faces | 2NM Triangles |
Edges | 3NM |
Vertices | 6N |
Vertex figure | Apeirogon, edge length 1 |
Measures (edge length 1) | |
Circumradius | |
Related polytopes | |
Army | Aztrat |
Regiment | Aztrat |
Dual | Order-3 apeirogonal tiling |
Topological properties | |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | [∞,3] |
Convex | Yes |
The order-∞ triangular tiling or trazat, also called the infinite-order triangular tiling is a paracompact regular tiling of the hyperbolic plane. Infinitely many ideal triangles join at each vertex. All vertices are ideal points at infinity.
Representations[edit | edit source]
An order–∞ triangular tiling has the following Coxeter diagrams:
- o∞o3x (full symmetry)
- o3x3o∞*a (triangles of two types)
Related polytopes[edit | edit source]
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Apeirogonal tiling | azat | {∞,3} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated apeirogonal tiling | tazat | t{∞,3} | ![]() ![]() ![]() ![]() ![]() |
|
Triapeirogonal tiling | tazt | r{∞,3} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-∞ triangular tiling | taztrat | t{3,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Order-∞ triangular tiling | aztrat | {3,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Small rhombitriapeirogonal tiling | srotazt | rr{∞,3} | ![]() ![]() ![]() ![]() ![]() |
|
Great rhombitriapeirogonal tiling | grotazt | tr{∞,3} | ![]() ![]() ![]() ![]() ![]() |
|
Snub triapeirogonal tiling | sr{∞,3} | ![]() ![]() ![]() ![]() ![]() |
External links[edit | edit source]
- Klitzing, Richard. "Aztrat".
- Wikipedia Contributors. "Infinite-order triangular tiling".