Order-4 apeirogonal tiling
Jump to navigation
Jump to search
Order-4 apeirogonal tiling | |
---|---|
![]() | |
Rank | 3 |
Type | Regular, paracompact |
Space | Hyperbolic |
Notation | |
Bowers style acronym | Squazat |
Coxeter diagram | x∞o4o (![]() ![]() ![]() ![]() ![]() |
Schläfli symbol | {∞,4} |
Elements | |
Faces | 4N apeirogons |
Edges | 2NM |
Vertices | NM |
Vertex figure | Square, edge length 2 |
Measures (edge length 1) | |
Circumradius | |
Related polytopes | |
Army | Squazat |
Regiment | Squazat |
Dual | Order-∞ square tiling |
Topological properties | |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | [∞,4] |
Convex | Yes |
The order-4 apeirogonal tiling is a paracompact regular tiling of the hyperbolic plane. 4 apeirogons join at each vertex.
It can be formed by rectifying the order-∞ apeirogonal tiling.
Representations[edit | edit source]
The order-4 apeirogonal tiling has the following Coxeter diagrams:
- x∞o4o (full symmetry)
- o∞x∞o (
) (as rectified order-∞ apeirogonal tiling)
- x∞x∞o∞*a (three types of faces) (
)
Related polytopes[edit | edit source]
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Order-4 apeirogonal tiling | squazat | {∞,4} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-4 apeirogonal tiling | tosquazat | t{∞,4} | ![]() ![]() ![]() ![]() ![]() |
|
Tetraapeirogonal tiling | tezt | r{∞,4} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-∞ square tiling | tazsquat | t{4,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Order-∞ square tiling | azsquat | {4,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Small rhombitetraapeirogonal tiling | srotezt | rr{∞,4} | ![]() ![]() ![]() ![]() ![]() |
|
Great rhombitetraapeirogonal tiling | grotezt | tr{∞,4} | ![]() ![]() ![]() ![]() ![]() |
|
Snub tetraapeirogonal tiling | sr{∞,4} | ![]() ![]() ![]() ![]() ![]() |
External links[edit | edit source]
- Klitzing, Richard. "squazat".
- Wikipedia Contributors. "Order-4 apeirogonal tiling".