Order-4 hexagonal tiling

From Polytope Wiki
Jump to navigation Jump to search
Order-4 hexagonal tiling
H2 tiling 246-1.png
Rank3
TypeRegular
SpaceHyperbolic
Notation
Bowers style acronymShexat
Coxeter diagramx6o4o (CDel node 1.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png)
Schläfli symbol{6,4}
Elements
Faces2N hexagons
Edges6N
Vertices3N
Vertex figureSquare, edge length 3
Measures (edge length 1)
Circumradius
Related polytopes
ArmyShexat
RegimentShexat
DualOrder-6 square tiling
Topological properties
SurfaceSphere
OrientableYes
Genus0
Properties
Symmetry[6,4]
ConvexYes


The order-4 hexagonal tiling is a regular tiling of the hyperbolic plane. 4 hexagons join at each vertex.

It can be formed by rectifying the order-6 hexagonal tiling.

Representations[edit | edit source]

The order-4 hexagonal tiling has the following Coxeter diagrams:

Related polytopes[edit | edit source]

o6o4o truncations
Name OBSA Schläfli symbol CD diagram Picture
Order-4 hexagonal tiling shexat {6,4} x6o4o
Uniform tiling 64-t0.png
Truncated order-4 hexagonal tiling toshexat t{6,4} x6x4o
Uniform tiling 64-t01.png
Tetrahexagonal tiling tehat r{6,4} o6x4o
Uniform tiling 64-t1.png
Truncated order-6 square tiling thisquat t{4,6} o6x4x
Uniform tiling 64-t12.png
Order-6 square tiling hisquat {4,6} o6o4x
Uniform tiling 64-t2.png
Small rhombitetrahexagonal tiling srotehat rr{6,4} x6o4x
Uniform tiling 64-t02.png
Great rhombitetrahexagonal tiling grotehat tr{6,4} x6x4x
Uniform tiling 64-t012.png
Snub tetrahexagonal tiling snatehat sr{6,4} s6s4s
Uniform tiling 64-snub.png

External links[edit | edit source]