Order-4 square tiling honeycomb

From Polytope Wiki
Jump to navigation Jump to search
Order-4 square tiling honeycomb
H3 444 FC boundary.png
Rank4
TypeRegular, paracompact
SpaceHyperbolic
Notation
Bowers style acronymSisquah
Coxeter diagramx4o4o4o (CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png)
Schläfli symbol{4,4,4}
Elements
Cells2NM square tilings
FacesNMK squares
EdgesNMK
Vertices2NK
Vertex figureSquare tiling, edge length 2
Measures (edge length 1)
Circumradius0
Related polytopes
ArmySisquah
RegimentSisquah
DualOrder-4 square tiling honeycomb
Abstract & topological properties
OrientableYes
Properties
Symmetry[4,4,4]
ConvexYes

The order-4 square tiling honeycomb is a paracompact regular tiling of 3D hyperbolic space. 4 ideal square tilings meet at each edge. All vertices are ideal points at infinity, with infinitely many square tilings meeting at each vertex in a square tiling arrangement.

Representations[edit | edit source]

The order-4 square tiling has the following Coxeter diagrams:

  • x4o4o4o (full symmetry)
  • x4o4o *b4o (cells of two types)
  • x4o4o4o4*a (cells of three types, x4o4x verf)
  • s4o4o4o
  • s4o4o *b4o
  • s4o4o4o4*a

Related polytopes[edit | edit source]

o4o4o4o truncations
Name OBSA Schläfli symbol CD diagram Picture
Order-4 square tiling honeycomb sisquah {4,4,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H3 444 FC boundary.png
Truncated order-4 square tiling honeycomb tissish t{4,4,4} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H3 444-1100.png
Rectified order-4 square tiling honeycomb = Square tiling honeycomb squah r{4,4,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
H3 444 boundary 0100.png
Dissquare tiling honeycomb dish 2t{4,4,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
H3 444-0110.png
Rectified order-4 square tiling honeycomb = Square tiling honeycomb squah r{4,4,4} CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
H3 444 boundary 0100.png
Truncated order-4 square tiling honeycomb tissish t{4,4,4} CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H3 444-0011.png
Order-4 square tiling honeycomb sisquah {4,4,4} CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
H3 444 FC boundary.png
Small rhombated square tiling honeycomb = Rectified square tiling honeycomb risquah rr{4,4,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
H3 444-1010.png
Great rhombated square tiling honeycomb = Truncated square tiling honeycomb tisquah tr{4,4,4} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png
H3 444-1110.png
Small rhombated square tiling honeycomb = Rectified square tiling honeycomb risquah rr{4,4,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
H3 444-0101.png
Great rhombated square tiling honeycomb = Truncated square tiling honeycomb tisquah tr{4,4,4} CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H3 444-0111.png
Small prismated order-4 square tiling honeycomb spiddish t0,3{4,4,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
H3 444-1001.png
Prismatorhombated order-4 square tiling honeycomb prissish t0,1,3{4,4,4} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png
H3 444-1101.png
Prismatorhombated order-4 square tiling honeycomb prissish t0,1,3{4,4,4} CDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H3 444-1011.png
Great prismated order-4 square tiling honeycomb dipiddish t0,1,2,3{4,4,4} CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node 1.png
H3 444-1111.png

External links[edit | edit source]