Order-5 pentagonal tiling

From Polytope Wiki
Jump to navigation Jump to search
Order-5 pentagonal tiling
H2 tiling 255-1.png
Rank3
TypeRegular
SpaceHyperbolic
Notation
Bowers style acronymPepat
Coxeter diagramx5o5o (CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png)
Schläfli symbol{5,5}
Elements
Faces2N pentagons
Edges5N
Vertices2N
Vertex figurePentagon, edge length (1+5)/2
Measures (edge length 1)
Circumradius
Related polytopes
ArmyPepat
RegimentPepat
DualOrder-5 pentagonal tiling
Topological properties
SurfaceSphere
OrientableYes
Genus0
Properties
Symmetry[5,5]
ConvexYes

The order-5 pentagonal tiling or pepat is a regular tiling of the hyperbolic plane. 5 pentagons join at each vertex. It is self-dual.

It is the simplest self-dual regular hyperbolic tiling.

It can be formed by alternating the order-5 square tiling.

Representations[edit | edit source]

The order-5 pentagonal tiling has the following Coxeter diagrams:

Related polytopes[edit | edit source]

Two uniform polyhedra, the dodecadodecahedron and the ditrigonary dodecadodecahedron, along with their duals, the medial rhombic triacontahedron and medial triambic icosahedron, are quotients of this tiling.

o5o5o truncations
Name OBSA Schläfli symbol CD diagram Picture
Order-5 pentagonal tiling pepat {5,5} x5o5o
Uniform tiling 552-t0.png
Truncated order-5 pentagonal tiling topepat t{5,5} x5x5o
Uniform tiling 552-t01.png
Pentapentagonal tiling = Pentagonal tiling peat r{5,5} o5x5o
Uniform tiling 552-t1.png
Truncated order-5 pentagonal tiling topepat t{5,5} o5x5x
Uniform tiling 552-t12.png
Order-5 pentagonal tiling pepat {5,5} o5o5x
Uniform tiling 552-t2.png
Small rhombipentapentagonal tiling = Tetrapentagonal tiling tepet rr{5,5} x5o5x
Uniform tiling 552-t02.png
Great rhombipentapentagonal tiling = Truncated pentagonal tiling topeat tr{5,5} x5x5x
Uniform tiling 552-t012.png
Snub pentapentagonal tiling spepat sr{5,5} s5s5s
Uniform tiling 552-snub.png

External links[edit | edit source]