Order-6 apeirogonal tiling
Jump to navigation
Jump to search
Order-6 apeirogonal tiling | |
---|---|
![]() | |
Rank | 3 |
Type | Regular, paracompact |
Space | Hyperbolic |
Notation | |
Bowers style acronym | Hazat |
Coxeter diagram | x∞o6o (![]() ![]() ![]() ![]() ![]() |
Schläfli symbol | {∞,6} |
Elements | |
Faces | 6N apeirogons |
Edges | 3NM |
Vertices | NM |
Vertex figure | Hexagon, edge length 2 |
Measures (edge length 1) | |
Circumradius | |
Related polytopes | |
Army | Hazat |
Regiment | Hazat |
Dual | Order-∞ hexagonal tiling |
Topological properties | |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | [∞,6] |
Convex | Yes |
The order-6 apeirogonal tiling is a paracompact regular tiling of the hyperbolic plane. 6 apeirogons join at each vertex.
Representations[edit | edit source]
The order-6 apeirogonal tiling has the following Coxeter diagrams:
- x∞o6o (full symmetry)
- o3o∞x∞*a (apeirogons of two types)
Related polytopes[edit | edit source]
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Order-6 apeirogonal tiling | hazat | {∞,6} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-6 apeirogonal tiling | thazat | t{∞,6} | ![]() ![]() ![]() ![]() ![]() |
|
Hexaapeirogonal tiling | hazt | r{∞,6} | ![]() ![]() ![]() ![]() ![]() |
|
Truncated order-∞ hexagonal tiling | tazhat | t{6,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Order-∞ hexagonal tiling | azhat | {6,∞} | ![]() ![]() ![]() ![]() ![]() |
|
Small rhombihexaapeirogonal tiling | srohazt | rr{∞,6} | ![]() ![]() ![]() ![]() ![]() |
|
Great rhombihexaapeirogonal tiling | grohazt | tr{∞,6} | ![]() ![]() ![]() ![]() ![]() |
|
Snub hexaapeirogonal tiling | sr{∞,6} | ![]() ![]() ![]() ![]() ![]() |
External links[edit | edit source]
- Wikipedia Contributors. "Order-6 apeirogonal tiling".