Order-7 triangular tiling
Jump to navigation
Jump to search
Order-7 triangular tiling | |
---|---|
Rank | 3 |
Type | Regular |
Space | Hyperbolic |
Notation | |
Bowers style acronym | Hetrat |
Coxeter diagram | o7o3x (![]() ![]() ![]() ![]() ![]() |
Schläfli symbol | {3,7} |
Elements | |
Faces | 14N Triangles |
Edges | 21N |
Vertices | 6N |
Vertex figure | Heptagon, edge length 1 |
Measures (edge length 1) | |
Circumradius | |
Related polytopes | |
Army | Hetrat |
Regiment | Hetrat |
Dual | Heptagonal tiling |
Topological properties | |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | [7,3] |
Convex | Yes |
The order-7 triangular tiling or hetrat is a regular tiling of the hyperbolic plane. 7 triangles join at each vertex.
It is the first tiling of triangles to be hyperbolic, rather than spherical or Euclidean.
Related polytopes[edit | edit source]
This tiling shares its edges with the great heptagonal tiling.
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Heptagonal tiling | heat | {7,3} | x7o3o | |
Truncated heptagonal tiling | theat | t{7,3} | x7x3o | |
Triheptagonal tiling | thet | r{7,3} | o7x3o | |
Truncated order-7 triangular tiling | thetrat | t{3,7} | o7x3x | |
Order-7 triangular tiling | hetrat | {3,7} | o7o3x | |
Small rhombitriheptagonal tiling | srothet | rr{7,3} | x7o3x | |
Great rhombitriheptagonal tiling | grothet | tr{7,3} | x7x3x | |
Snub triheptagonal tiling | snathet | sr{7,3} | s7s3s |
External links[edit | edit source]
- Klitzing, Richard. "Hetrat".
- Nan Ma. "Order-7 triangular tiling {3,7}".
- Wikipedia Contributors. "Order-7 triangular tiling".