Order-7 triangular tiling

From Polytope Wiki
Jump to navigation Jump to search
Order-7 triangular tiling
Order-7 triangular tiling.svg
Rank3
TypeRegular
SpaceHyperbolic
Notation
Bowers style acronymHetrat
Coxeter diagramo7o3x (CDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png)
Schläfli symbol{3,7}
Elements
Faces14N Triangles
Edges21N
Vertices6N
Vertex figureHeptagon, edge length 1
Measures (edge length 1)
Circumradius
Related polytopes
ArmyHetrat
RegimentHetrat
DualHeptagonal tiling
Topological properties
SurfaceSphere
OrientableYes
Genus0
Properties
Symmetry[7,3]
ConvexYes

The order-7 triangular tiling or hetrat is a regular tiling of the hyperbolic plane. 7 triangles join at each vertex.

It is the first tiling of triangles to be hyperbolic, rather than spherical or Euclidean.

Related polytopes[edit | edit source]

This tiling shares its edges with the great heptagonal tiling.

o7o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Heptagonal tiling heat {7,3} x7o3o
Uniform tiling 73-t0.png
Truncated heptagonal tiling theat t{7,3} x7x3o
Uniform tiling 73-t01.png
Triheptagonal tiling thet r{7,3} o7x3o
Uniform tiling 73-t1.png
Truncated order-7 triangular tiling thetrat t{3,7} o7x3x
Uniform tiling 73-t12.png
Order-7 triangular tiling hetrat {3,7} o7o3x
Uniform tiling 73-t2.png
Small rhombitriheptagonal tiling srothet rr{7,3} x7o3x
Uniform tiling 73-t02.png
Great rhombitriheptagonal tiling grothet tr{7,3} x7x3x
Uniform tiling 73-t012.png
Snub triheptagonal tiling snathet sr{7,3} s7s3s
Uniform tiling 73-snub.png

External links[edit | edit source]