Order-8 triangular tiling

From Polytope Wiki
Jump to navigation Jump to search
Order-8 triangular tiling
Rank3
TypeRegular
SpaceHyperbolic
Notation
Bowers style acronymOtrat
Coxeter diagramo8o3x ()
Schläfli symbol{3,8}
Elements
Faces8N triangles
Edges12N
Vertices3N
Vertex figureOctagon, edge length 1
HolesOctagons
Measures (edge length 1)
Circumradius
Related polytopes
ArmyOtrat
RegimentOtrat
DualOctagonal tiling
φ 2 Order-4 octagonal tiling
Abstract & topological properties
SurfaceSphere
OrientableYes
Genus0
Properties
Symmetry[8,3]
ConvexYes

The order-8 triangular tiling is a regular tiling of the hyperbolic plane. 8 triangles join at each vertex.

Representations[edit | edit source]

An order-8 triangular tiling has the following Coxeter diagrams:

  • o8o3x () (full symmetry)
  • x3o4o3*a () (triangles of two alternating types)

External links[edit | edit source]