# Order-9 triangular tiling

Jump to navigation
Jump to search

Order-9 triangular tiling | |
---|---|

Rank | 3 |

Type | Regular |

Space | Hyperbolic |

Notation | |

Bowers style acronym | Entrat |

Coxeter diagram | o9o3x () |

Schläfli symbol | {3,9} |

Elements | |

Faces | 6N triangles |

Edges | 9N |

Vertices | 2N |

Vertex figure | Enneagon, edge length 1 |

Measures (edge length 1) | |

Circumradius | |

Related polytopes | |

Army | Entrat |

Regiment | Entrat |

Dual | Enneagonal tiling |

Topological properties | |

Surface | Sphere |

Orientable | Yes |

Genus | 0 |

Properties | |

Symmetry | [9,3] |

Convex | Yes |

The **order-9 triangular tiling** is a regular tiling of the hyperbolic plane. 9 triangles join at each vertex.

## Related polytopes[edit | edit source]

Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|

Enneagonal tiling | enat | {9,3} | x9o3o | |

Truncated enneagonal tiling | tenat | t{9,3} | x9x3o | |

Trienneagonal tiling | tent | r{9,3} | o9x3o | |

Truncated order-9 triangular tiling | tentrat | t{3,9} | o9x3x | |

Order-9 triangular tiling | entrat | {3,9} | o9o3x | |

Small rhombitrienneagonal tiling | srotent | rr{9,3} | x9o3x | |

Great rhombitrienneagonal tiling | grotent | tr{9,3} | x9x3x | |

Snub trienneagonal tiling | snatent | sr{9,3} | s9s3s |