Order-9 triangular tiling
Jump to navigation
Jump to search
Order-9 triangular tiling | |
---|---|
![]() | |
Rank | 3 |
Type | Regular |
Space | Hyperbolic |
Notation | |
Bowers style acronym | Entrat |
Coxeter diagram | o9o3x (![]() ![]() ![]() ![]() ![]() |
Schläfli symbol | {3,9} |
Elements | |
Faces | 6N triangles |
Edges | 9N |
Vertices | 2N |
Vertex figure | Enneagon, edge length 1 |
Measures (edge length 1) | |
Circumradius | |
Related polytopes | |
Army | Entrat |
Regiment | Entrat |
Dual | Enneagonal tiling |
Topological properties | |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | [9,3] |
Convex | Yes |
The order-9 triangular tiling is a regular tiling of the hyperbolic plane. 9 triangles join at each vertex.
Related polytopes[edit | edit source]
Name | OBSA | Schläfli symbol | CD diagram | Picture |
---|---|---|---|---|
Enneagonal tiling | enat | {9,3} | x9o3o | |
Truncated enneagonal tiling | tenat | t{9,3} | x9x3o | |
Trienneagonal tiling | tent | r{9,3} | o9x3o | |
Truncated order-9 triangular tiling | tentrat | t{3,9} | o9x3x | |
Order-9 triangular tiling | entrat | {3,9} | o9o3x | |
Small rhombitrienneagonal tiling | srotent | rr{9,3} | x9o3x | |
Great rhombitrienneagonal tiling | grotent | tr{9,3} | x9x3x | |
Snub trienneagonal tiling | snatent | sr{9,3} | s9s3s |