Orthoplex

From Polytope Wiki
Jump to navigation Jump to search
n-orthoplex
Rankn
TypeRegular
SpaceSpherical
Notation
Coxeter diagramo4o3o3...3o3x
(CDel node.pngCDel 4.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png)
Schläfli symbol{3,3, ... 3,4}
Elements
Vertices2n
Vertex figure(n-1)-hypercube, edge length 1
Measures (edge length 1)
Circumradius
Inradius
Volume
Height
Central density1
Number of pieces
Level of complexity1
Related polytopes
DualHypercube
ConjugateNone
Abstract properties
Flag count
Euler characteristic0 if n even
2 if n odd
Topological properties
OrientableYes
Properties
SymmetryBn, order
ConvexYes
NatureTame

An orthoplex, cross-polytope, or hyperoctahedron is the simplest center-symmetric polytope in each respective dimension, by vertex count. The n-dimensional orthoplex, or simply the n-orthoplex, has 2n vertices lying in n opposite pairs, connected by each of the 2n (n − 1)-simplices containing exactly one vertex from each pair. Alternatively, one can construct each orthoplex as the bipyramid of the orthoplex of the lower dimension. The tegum product of an m-orthoplex and an n-orthoplex is an (m + n)-orthoplex. An n-orthoplex can also be constructed as the antiprism of the (n − 1)-simplex. They are the only polytopes is 3+ dimensions that are both quasiregular and regular other than the hypercubic honeycombs.

Every orthoplex can be made regular; in fact, it’s rare for the term to be used to refer to non-regular shapes. As such, the orthoplexes comprise one of the three infinite families of regular polytopes that exist in every dimension, the other two being the simplexes and the hypercubes (the duals of the orthoplexes).

All orthoplexes are step prisms derived from the compound of two simplices in two inverted positions.

Naming[edit | edit source]

The name orthoplex was coined by Conway from "orthant complex", alluding to the fact that each facet of a centered orthoplex in usual orientation lies in a different orthant (the generalization of a quadrant to higher dimensions) of its space.[citation needed] Alternate names include:

  • Cross-polytope, alluding to the cross shape formed by the lines from the center of an orthoplex to its vertices.
  • Hyperoctahedron, as a generalized octahedron.

Elements[edit | edit source]

All of the elements of an orthoplex are simplexes. The number of d-elements in an n-orthoplex is given by the the binomial coefficient 2d + 1C(n, d + 1). This is because any choice of d+1 vertices, no two opposite, define a unique d-simplex. In particular, an n-orthoplex has 2n vertices and 2n facets, each shaped like an (n − 1)-simplex, with the vertex figure being the orthoplex of the previous dimension.

In total, an n-orthoplex has 3n elements, including the nullitope and excluding the bulk of the polytope.

The elements of an n-orthoplex may be explicitly characterized as follows. Consider 2n vertices with coordinates as previously specified, and divide them into opposite pairs with respect to the orthoplex’s center. Then, all of the k-elements of the orthoplex will be given by the unique k-simplices through each subset of k + 1 vertices such that no two of them are opposite.

Examples[edit | edit source]

Excluding the point, the orthoplexes up to 10D are the following:

Orthoplexes by dimension
Rank Name Picture Rank Name Picture
1 Dyad
Line segment.svg
6 Hexacontatetrapeton
6-orthoplex.svg
2 Square
2-orthoplex.svg
7 Hecatonicosoctaexon
7-orthoplex.svg
3 Octahedron
3-orthoplex.svg
8 Diacosipentacontahexazetton
8-orthoplex.svg
4 Hexadecachoron
4-orthoplex.svg
9 Pentacosidodecayotton
9-orthoplex.svg
5 Triacontaditeron
5-orthoplex.svg
10 Chiliaicositetraxennon
10-orthoplex.svg

Vertex coordinates[edit | edit source]

Coordinates for the vertices of an n-orthoplex with edge length 1 are given by all permutations of:

  • 2/2, 0, ..., 0),

where the last n–1 entries are zeros.

Measures[edit | edit source]

  • The circumradius of an n-orthoplex of unit edge length is , regardless of n.
  • This same orthoplex's inradius is given by .
  • Its height from a facet to the opposite facet is given by twice the inradius, that is .
  • Its hypervolume is given by .
  • The angle between two facet hyperplanes is .

External links[edit | edit source]