Pentagrammic-prismatic heptacosiicosachoron

(Redirected from Paphicki)
Pentagrammic-prismatic heptacosiicosachoron
Rank4
TypeUniform
Notation
Bowers style acronymPaphicki
Elements
Cells720 pentagrammic prisms
Faces1800 squares, 720 pentagrams
Edges1200
Vertices120
Vertex figureSmall noble triangular hexecontahedron
Edge figure(stip 4 stip 4 stip 5/2)×3
Measures (edge length 1)
Circumradius${\displaystyle 1}$
Inradius${\displaystyle {\frac {\sqrt {25+10{\sqrt {5}}}}{10}}\approx 0.68819}$
Volume${\displaystyle {\frac {45{\sqrt {5}}}{2}}\approx 50.31153}$
Central density29
Number of external pieces8640
Level of complexity16
Related polytopes
ArmyEx
RegimentSishi
ConjugatePentagonal-prismatic heptacosiicosachoron
Convex coreJoined hecatonicosachoron
Abstract & topological properties
OrientableYes
Properties
SymmetryH4, order 14400
ConvexNo
NatureFeral

The pentagrammic-prismatic heptacosiicosachoron, or paphicki, is a noble uniform polychoron in the small stellated hecatonicosachoron's regiment. It consists of 720 pentagrammic prisms, 60 of which meet each of its 120 vertices.

Vertex coordinates

The vertices of a pentagrammic-prismatic heptacosiicosachoron of unit edge length are given by:

• ${\displaystyle \left(\pm 1,\,0,\,0,\,0\right),}$
• ${\displaystyle \left(\pm {\frac {1}{2}},\,\pm {\frac {1}{2}},\,\pm {\frac {1}{2}},\,\pm {\frac {1}{2}}\right),}$

and all even permutations of:

• ${\displaystyle \left(\pm {\frac {1+{\sqrt {5}}}{4}},\,\pm {\frac {{\sqrt {5}}-1}{4}},\,\pm {\frac {1}{2}},\,0\right).}$

The first two sets of vertices form a unit icositetrachoron that can be inscribed into the small stellated hecatonicosachoron. This corresponds to the fact there is a compound of 25 icositetrachora with the same vertices and edges as the small stellated hecatonicosachoron.