Pentachoric symmetry
Jump to navigation
Jump to search
Pentachoric symmetry | |
---|---|
Rank | 4 |
Space | Spherical |
Order | 120 |
Info | |
Coxeter diagram | |
Related polytopes | |
Omnitruncate | Great disprismatopentapentachoron |
Pentachoric symmetry, also known as pennic symmetry and notated as A4, is a 4D spherical Coxeter group. It is the symmetry group of the regular pentachoron.
Subgroups[edit | edit source]
- A4+ (maximal)
- A3×I (maximal)
- A3+×I
- A2×A1×I (maximal)
- (A2×A1)+×I
- A2+×A1×I
- Extended 5-2 step prismatic symmetry (maximal)
- 5-2 step prismatic symmetry
- Extended rotational 5-2 step prismatic symmetry
- Rotational 5-2 step prismatic symmetry
- (B2×A1)/2×I
- (B2+×A1)/2×I
- A2×I×I
- A2+×I×I
- K3×I+
- K2×I×I
- K2+×I×I
- A1×I×I×I
- I×I×I×I
Convex polytopes with A4 symmetry[edit | edit source]
- Pentachoron (regular)
- Rectified pentachoron (isogonal)/Joined pentachoron (isotopic)
- Truncated pentachoron (isogonal)/Tetrakis pentachoron (isotopic)
- Pentapentachoron (isogonal)/Disphenoidal triacontachoron (isotopic)
- Small rhombated pentachoron (isogonal)/Notched triacontachoron (isotopic)
- Great rhombated pentachoron (isogonal)/Sphenoidal hexecontachoron (isotopic)
- Small disprismatopentapentachoron (isogonal)/Triangular-antitegmatic icosachoron (isotopic)
- Prismatorhombated pentachoron (isogonal)/Rhombipyramidal hexecontachoron (isotopic)
- Great disprismatopentapentachoron (isogonal)/Tetrahedral hecatonicosachoron (isotopic)