Pentadecatradakon

From Polytope Wiki
Jump to navigation Jump to search
Pentadecatradakon
14-simplex t0.svg
Rank14
TypeRegular
SpaceSpherical
Notation
Coxeter diagramx3o3o3o3o3o3o3o3o3o3o3o3o3o (CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png)
Schläfli symbol{3,3,3,3,3,3,3,3,3,3,3,3,3}
Elements
Tradaka15 tetradecadoka
Doka105 tridecahenda
Henda455 dodecadaka
Daka1365 hendecaxenna
Xenna3003 decayotta
Yotta5005 enneazetta
Zetta6435 octaexa
Exa6435 heptapeta
Peta5005 hexatera
Tera3003 pentachora
Cells1365 tetrahedra
Faces455 triangles
Edges105
Vertices15
Vertex figureTetradecadokon, edge length 1
Measures (edge length 1)
Circumradius
Inradius
Hypervolume
Dihedral angle
Height
Central density1
Number of external pieces15
Level of complexity1
Related polytopes
ArmyPentadecatradakon
RegimentPentadecatradakon
DualPentadecatradakon
ConjugateNone
Abstract & topological properties
Flag count1307674368000
Euler characteristic0
OrientableYes
Properties
SymmetryA14, order 1307674368000
ConvexYes
NatureTame

The pentadecatradakon, also commonly called the 14-simplex, is the simplest possible non-degenerate polytradakon. The full symmetry version has 15 regular tetradecadoka as facets, joining 3 to a hendon and 14 to a vertex, and is one of the 3 regular polytradaka. It is the 14-dimensional simplex.

Vertex coordinates[edit | edit source]

The vertices of a regular pentadecatradakon of edge length 1, centered at the origin, are given by:

  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • .

Much simpler coordinates can be given in 15 dimensions, as all permutations of:

  • .