Pentadecatradakon
Rank 14 Type Regular Space Spherical Notation Coxeter diagram x3o3o3o3o3o3o3o3o3o3o3o3o3o ( ) Schläfli symbol {3,3,3,3,3,3,3,3,3,3,3,3,3} Elements Tradaka 15 tetradecadoka Doka 105 tridecahenda Henda 455 dodecadaka Daka 1365 hendecaxenna Xenna 3003 decayotta Yotta 5005 enneazetta Zetta 6435 octaexa Exa 6435 heptapeta Peta 5005 hexatera Tera 3003 pentachora Cells 1365 tetrahedra Faces 455 triangles Edges 105 Vertices 15 Vertex figure Tetradecadokon , edge length 1Measures (edge length 1) Circumradius
105
15
≈
0.68313
{\displaystyle \frac{\sqrt{105}}{15} \approx 0.68313}
Inradius
105
210
≈
0.048795
{\displaystyle \frac{\sqrt{105}}{210} \approx 0.048795}
Hypervolume
15
11158821273600
≈
3.4708
×
10
−
13
{\displaystyle \frac{\sqrt{15}}{11158821273600} \approx 3.4708×10^{-13}}
Dihedral angle
arccos
(
1
14
)
≈
85.90396
°
{\displaystyle \arccos\left(\frac{1}{14}\right) \approx 85.90396°}
Height
105
14
≈
0.73193
{\displaystyle \frac{\sqrt{105}}{14} \approx 0.73193}
Central density 1 Number of external pieces 15 Level of complexity 1 Related polytopes Army Pentadecatradakon Regiment Pentadecatradakon Dual Pentadecatradakon Conjugate None Abstract & topological properties Flag count1307674368000 Euler characteristic 0 Orientable Yes Properties Symmetry A14 , order 1307674368000Convex Yes Nature Tame
The pentadecatradakon , also commonly called the 14-simplex , is the simplest possible non-degenerate polytradakon . The full symmetry version has 15 regular tetradecadoka as facets, joining 3 to a hendon and 14 to a vertex, and is one of the 3 regular polytradaka . It is the 14-dimensional simplex .
The vertices of a regular pentadecatradakon of edge length 1, centered at the origin, are given by:
(
±
1
2
,
−
3
6
,
−
6
12
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(\pm\frac{1}{2},\,-\frac{\sqrt{3}}{6},\,-\frac{\sqrt{6}}{12},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
3
3
,
−
6
12
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,\frac{\sqrt{3}}{3},\,-\frac{\sqrt{6}}{12},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
6
4
,
−
10
20
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,\frac{\sqrt{6}}{4},\,-\frac{\sqrt{10}}{20},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
0
,
10
5
,
−
15
30
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,\frac{\sqrt{10}}{5},\,-\frac{\sqrt{15}}{30},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
0
,
0
,
15
6
,
−
21
42
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,\frac{\sqrt{15}}{6},\,-\frac{\sqrt{21}}{42},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
21
7
,
−
7
28
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{21}}{7},\,-\frac{\sqrt7}{28},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
7
4
,
−
1
12
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt7}{4},\,-\frac{1}{12},\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
2
3
,
−
5
30
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac23,\,-\frac{\sqrt5}{30},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
3
5
10
,
−
55
110
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{3\sqrt5}{10},\,-\frac{\sqrt{55}}{110},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
55
11
,
−
66
132
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{55}}{11},\,-\frac{\sqrt{66}}{132},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
66
12
,
−
78
156
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{66}}{12},\,-\frac{\sqrt{78}}{156},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
78
13
,
−
91
182
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{78}}{13},\,-\frac{\sqrt{91}}{182},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
91
14
,
−
105
210
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{91}}{14},\,-\frac{\sqrt{105}}{210}\right)}
,
(
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
105
15
)
{\displaystyle \left(0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,\frac{\sqrt{105}}{15}\right)}
.
Much simpler coordinates can be given in 15 dimensions , as all permutations of:
(
2
2
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
)
{\displaystyle \left(\frac{\sqrt2}{2},\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0,\,0\right)}
.