The pentagonal duoexpandoprism or pedep is a convex isogonal polychoron and the fourth member of the duoexpandoprism family. It consists of 20 pentagonal prisms of two kinds, 25 rectangular trapezoprisms , 50 wedges , and 25 tetragonal disphenoids . Each vertex joins 2 pentagonal prisms, 1 tetragonal disphenoid, 3 wedges, and 2 rectangular trapezoprisms. It can be obtained as the convex hull of two orthogonal pentagonal-decagonal duoprisms , or more generally pentagonal-dipentagonal duoprisms , and a subset of its variations can be constructed by expanding the cells of the pentagonal duoprism outward. However, it cannot be made uniform.
This is one of a total of five polychora that can be obtained as the convex hull of two orthogonal pentagonal-dipentagonal duoprisms. To produce variants of this polychoron, if the polychoron is written as ao5bc oa5cb&#zy, c must be in the range
c
<
b
+
a
(
1
+
5
)
4
{\displaystyle c < b+\frac{a(1+\sqrt5)}{4}}
. It generally has circumradius
5
a
2
+
5
b
2
+
5
a
b
+
5
c
2
+
(
a
2
+
b
2
+
3
a
b
+
c
2
)
5
10
{\displaystyle \sqrt{\frac{5a^2+5b^2+5ab+5c^2+(a^2+b^2+3ab+c^2)\sqrt5}{10}}}
.
Using the ratio method, the lowest possible ratio between the longest and shortest edges is 1:
5
+
3
5
−
50
+
18
5
2
{\displaystyle \frac{5+3\sqrt5-\sqrt{50+18\sqrt5}}{2}}
≈ 1:1.10412.
The vertices of a pentagonal duoexpandoprism, constructed as the convex hull of two orthogonal pentagonal-decagonal duoprisms of edge length 1, centered at the origin, are given by:
(
0
,
5
+
5
10
,
±
1
+
5
2
,
0
)
,
{\displaystyle \left(0,\,\sqrt{\frac{5+\sqrt5}{10}},\,±\frac{1+\sqrt5}{2},\,0\right),}
(
0
,
5
+
5
10
,
±
3
+
5
4
,
±
5
+
5
8
)
,
{\displaystyle \left(0,\,\sqrt{\frac{5+\sqrt5}{10}},\,±\frac{3+\sqrt5}{4},\,±\sqrt{\frac{5+\sqrt5}{8}}\right),}
(
0
,
5
+
5
10
,
±
1
2
,
±
5
+
2
5
2
)
,
{\displaystyle \left(0,\,\sqrt{\frac{5+\sqrt5}{10}},\,±\frac12,\,±\frac{\sqrt{5+2\sqrt5}}{2}\right),}
(
±
1
+
5
4
,
5
−
5
40
,
±
1
+
5
2
,
0
)
,
{\displaystyle \left(±\frac{1+\sqrt5}{4},\,\sqrt{\frac{5-\sqrt5}{40}},\,±\frac{1+\sqrt5}{2},\,0\right),}
(
±
1
+
5
4
,
5
−
5
40
,
±
3
+
5
4
,
±
5
+
5
8
)
,
{\displaystyle \left(±\frac{1+\sqrt5}{4},\,\sqrt{\frac{5-\sqrt5}{40}},\,±\frac{3+\sqrt5}{4},\,±\sqrt{\frac{5+\sqrt5}{8}}\right),}
(
±
1
+
5
4
,
5
−
5
40
,
±
1
2
,
±
5
+
2
5
2
)
,
{\displaystyle \left(±\frac{1+\sqrt5}{4},\,\sqrt{\frac{5-\sqrt5}{40}},\,±\frac12,\,±\frac{\sqrt{5+2\sqrt5}}{2}\right),}
(
±
1
2
,
−
5
+
2
5
20
,
±
1
+
5
2
,
0
)
,
{\displaystyle \left(±\frac12,\,-\sqrt{\frac{5+2\sqrt5}{20}},\,±\frac{1+\sqrt5}{2},\,0\right),}
(
±
1
2
,
−
5
+
2
5
20
,
±
3
+
5
4
,
±
5
+
5
8
)
,
{\displaystyle \left(±\frac12,\,-\sqrt{\frac{5+2\sqrt5}{20}},\,±\frac{3+\sqrt5}{4},\,±\sqrt{\frac{5+\sqrt5}{8}}\right),}
(
±
1
2
,
−
5
+
2
5
20
,
±
1
2
,
±
5
+
2
5
2
)
,
{\displaystyle \left(±\frac12,\,-\sqrt{\frac{5+2\sqrt5}{20}},\,±\frac12,\,±\frac{\sqrt{5+2\sqrt5}}{2}\right),}
(
±
1
+
5
2
,
0
,
0
,
5
+
5
10
)
,
{\displaystyle \left(±\frac{1+\sqrt5}{2},\,0,\,0,\,\sqrt{\frac{5+\sqrt5}{10}}\right),}
(
±
3
+
5
4
,
±
5
+
5
8
,
0
,
5
+
5
10
)
,
{\displaystyle \left(±\frac{3+\sqrt5}{4},\,±\sqrt{\frac{5+\sqrt5}{8}},\,0,\,\sqrt{\frac{5+\sqrt5}{10}}\right),}
(
±
1
2
,
±
5
+
2
5
2
,
0
,
5
+
5
10
)
,
{\displaystyle \left(±\frac12,\,±\frac{\sqrt{5+2\sqrt5}}{2},\,0,\,\sqrt{\frac{5+\sqrt5}{10}}\right),}
(
±
1
+
5
2
,
0
,
±
1
+
5
4
,
5
−
5
40
)
,
{\displaystyle \left(±\frac{1+\sqrt5}{2},\,0,\,±\frac{1+\sqrt5}{4},\,\sqrt{\frac{5-\sqrt5}{40}}\right),}
(
±
3
+
5
4
,
±
5
+
5
8
,
±
1
+
5
4
,
5
−
5
40
)
,
{\displaystyle \left(±\frac{3+\sqrt5}{4},\,±\sqrt{\frac{5+\sqrt5}{8}},\,±\frac{1+\sqrt5}{4},\,\sqrt{\frac{5-\sqrt5}{40}}\right),}
(
±
1
2
,
±
5
+
2
5
2
,
±
1
+
5
4
,
5
−
5
40
)
,
{\displaystyle \left(±\frac12,\,±\frac{\sqrt{5+2\sqrt5}}{2},\,±\frac{1+\sqrt5}{4},\,\sqrt{\frac{5-\sqrt5}{40}}\right),}
(
±
1
+
5
4
,
0
,
±
1
2
,
−
5
+
2
5
20
)
,
{\displaystyle \left(±\frac{1+\sqrt5}{4},\,0,\,±\frac12,\,-\sqrt{\frac{5+2\sqrt5}{20}}\right),}
(
±
3
+
5
4
,
±
5
+
5
8
,
±
1
2
,
−
5
+
2
5
20
)
,
{\displaystyle \left(±\frac{3+\sqrt5}{4},\,±\sqrt{\frac{5+\sqrt5}{8}},\,±\frac12,\,-\sqrt{\frac{5+2\sqrt5}{20}}\right),}
(
±
1
2
,
±
5
+
2
5
2
,
±
1
2
,
−
5
+
2
5
20
)
.
{\displaystyle \left(±\frac12,\,±\frac{\sqrt{5+2\sqrt5}}{2},\,±\frac12,\,-\sqrt{\frac{5+2\sqrt5}{20}}\right).}