Pentagonal orthobicupola

From Polytope Wiki
Jump to navigation Jump to search
Pentagonal orthobicupola
Rank3
TypeCRF
Notation
Bowers style acronymPobcu
Coxeter diagramxxx5oxo&#xt
Elements
Faces
Edges5+5+10+20
Vertices10+10
Vertex figures10 isosceles trapezoids, edge lengths 1, 2, (1+5}/2, 2
 10 kites, edge lengths 1 and 2
Measures (edge length 1)
Volume
Dihedral angles3–4:
 4–5:
 3–3:
 4–4:
Height[1]
Central density1
Number of external pieces22
Level of complexity8
Related polytopes
ArmyPobcu
RegimentPobcu
DualDeltotrapezohedral icosahedron
ConjugateRetrograde pentagrammic orthobicupola
Abstract & topological properties
Flag count160
Euler characteristic2
SurfaceSphere
OrientableYes
Genus0
Properties
SymmetryH2×A1, order 20
Flag orbits8
ConvexYes
NatureTame

The pentagonal orthobicupola (OBSA: pobcu) is one of the 92 Johnson solids (J30). It consists of 10 triangles, 10 squares, and 2 pentagons. It can be constructed by attaching two pentagonal cupolas at their decagonal bases, such that the two pentagonal bases are in the same orientation.

If the cupolas are joined such that the bases are rotated 36º, the result is the pentagonal gyrobicupola.

Vertex coordinates[edit | edit source]

A pentagonal orthobicupola of edge length 1 has vertices given by the following coordinates:

  • ,
  • ,
  • ,
  • ,
  • ,
  • .

Related polyhedra[edit | edit source]

External links[edit | edit source]

References[edit | edit source]

Bibliography[edit | edit source]

  • Stewart, Bonnie (1964). Adventures Amoung the Toroids (2 ed.). ISBN 0686-119 36-3.