Petrial halved mucube
Jump to navigation
Jump to search
Petrial halved mucube | |
---|---|
Rank | 3 |
Type | Regular |
Space | Spherical |
Notation | |
Schläfli symbol | , |
Elements | |
Faces | N skew squares |
Edges | 2N |
Vertices | 3N |
Vertex figure | Hexagon |
Petrie polygons | 3N skew hexagons |
Related polytopes | |
Dual | Skewed Petrial muoctahedron |
Petrie dual | Halved mucube |
Halving | Mutetrahedron |
Abstract & topological properties | |
Schläfli type | {4,6} |
Orientable | Yes |
Genus | ∞ |
Properties | |
Convex | No |
The Petrial halved mucube is a regular pure apeirohedron.
Gallery[edit | edit source]
Related polytopes[edit | edit source]
The Petrial halved mucube can be halved to form the mutetrahedron.
External links[edit | edit source]
- jan Misali (2020). "there are 48 regular polyhedra".
Bibliography[edit | edit source]
- McMullen, Peter; Schulte, Egon (1997). "Regular Polytopes in Ordinary Space" (PDF). Discrete Computational Geometry (47): 449–478. doi:10.1007/PL00009304.