Petrial muoctahedron

From Polytope Wiki
Jump to navigation Jump to search
Petrial muoctahedron
Rank3
Notation
Schläfli symbol
[1]
Elements
Faces triangular helices
Edges
Vertices
Vertex figureSkew square
Petrie polygonsHexagons
Related polytopes
ArmyBitruncated cubic honeycomb
RegimentBitruncated cubic honeycomb
Petrie dualMuoctahedron
SkewingSkewed Petrial muoctahedron
κ ?Muoctahedron
Abstract & topological properties
Flag count
Schläfli type{∞,4}
OrientableYes
Properties
ConvexNo
Dimension vector(1,1,2)
History
Discovered byBranko Grünbaum
First discovered1977
A section of the muoctahedron with a Petrie polygon highlighted in red.

The Petrial muoctahedron is a regular skew apeirohedron in 3 dimensional Euclidean space. It is the Petrie dual of the muoctahedron.

External links[edit | edit source]

References[edit | edit source]

  1. McMullen & Schulte (1997:465)

Bibliography[edit | edit source]

  • Grünbaum, Branko (1977), "Regular polyhedra - old and new" (PDF), Aequationes Mathematicae, 16, doi:10.1007/BF01836414
  • McMullen, Peter; Schulte, Egon (1997). "Regular Polytopes in Ordinary Space" (PDF). Discrete Computational Geometry (47): 449–478. doi:10.1007/PL00009304.