Quasitruncated cuboctahedron

From Polytope Wiki
Jump to navigation Jump to search
Quasitruncated cuboctahedron
Great truncated cuboctahedron.png
Rank3
TypeUniform
SpaceSpherical
Notation
Bowers style acronymQuitco
Coxeter diagramx4/3x3x (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Elements
Faces12 squares, 8 hexagons, 6 octagrams
Edges24+24+24
Vertices48
Vertex figureScalene triangle, edge lengths 2, 3, 2–2
Great truncated cuboctahedron vertfig.png
Measures (edge length 1)
Circumradius
Volume
Dihedral angles8/3–4: 135°
 8/3–6:
 6–4:
Central density-1
Number of external pieces146
Level of complexity26
Related polytopes
ArmySemi-uniform Girco, edge lengths (octagons), (ditrigon-rectangle)
RegimentQuitco
DualGreat disdyakis dodecahedron
ConjugateGreat rhombicuboctahedron
Convex coreOctahedron
Abstract & topological properties
Flag count288
Euler characteristic2
OrientableYes
Genus0
Properties
SymmetryB3, order 48
ConvexNo
NatureTame

The quasitruncated cuboctahedron or quitco, also called the great truncated cuboctahedron, is a uniform polyhedron. It consists of 12 squares, 8 hexagons, and 6 octagrams, with one of each type of face meeting per vertex. It can be obtained by quasicantitruncation of the cube or octahedron, or equivalently by quasitruncating the vertices of a cuboctahedron and then adjusting the edge lengths to be all equal.

Vertex coordinates[edit | edit source]

A quasitruncated cuboctahedron of edge length 1 has vertex coordinates given by all permutations of:

Related polyhedra[edit | edit source]

o4/3o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Cube cube {4/3,3} x4/3o3o (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node.png)
Hexahedron.png
Quasitruncated hexahedron quith t{4/3,3} x4/3x3o (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node.png)
Stellated truncated hexahedron.png
Cuboctahedron co r{3,4/3} o4/3x3o (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node.png)
Cuboctahedron.png
Truncated octahedron toe t{3,4/3} o4/3x3x (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Truncated octahedron.png
Octahedron oct {3,4/3} o4/3o3x (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node 1.png)
Octahedron.png
Quasirhombicuboctahedron querco rr{3,4/3} x4/3o3x (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node 1.png)
Uniform great rhombicuboctahedron.png
Quasitruncated cuboctahedron quitco tr{3,4/3} x4/3x3x (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Great truncated cuboctahedron.png
(degenerate, oct+6(4)) o4/3o3ß (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node h1.png)
Octahedron.png
Icosahedron ike s{3,4/3} o4/3s3s (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node h.pngCDel 3.pngCDel node h.png)
Icosahedron.png

External links[edit | edit source]