Quasitruncated dodecadodecahedron

From Polytope Wiki
Jump to navigation Jump to search
Quasitruncated dodecadodecahedron
Truncated dodecadodecahedron.png
Rank3
TypeUniform
SpaceSpherical
Notation
Bowers style acronymQuitdid
Coxeter diagramx5/3x5x (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 5.pngCDel node 1.png)
Elements
Faces30 squares, 12 decagons, 12 decagrams
Edges60+60+60
Vertices120
Vertex figureScalene triangle, edge lengths 2, (5+5)/2, (5–5)/2
Truncated dodecadodecahedron vertfig.png
Measures (edge length 1)
Circumradius
Volume15
Dihedral angles10/3–4:
 10–10/3:
 10–4:
Central density-3
Number of pieces402
Level of complexity28
Related polytopes
ArmySemi-uniform Grid
RegimentQuitdid
DualMedial disdyakis triacontahedron
ConjugateQuasitruncated dodecadodecahedron
Convex coreDodecahedron
Abstract properties
Euler characteristic-6
Topological properties
OrientableYes
Properties
SymmetryH3, order 120
ConvexNo
NatureTame

The quasitruncated dodecadodecahedron or quitdid, also called the truncated dodecadodecahedron, is a uniform polyhedron. It consists of 12 decagrams, 12 decagons, and 30 squares, with one of each type of face meeting per vertex. It can be obtained by quasicantitruncation of the small stellated dodecahedron or great dodecahedron, or equivalently by quasitruncating the vertices of a dodecadodecahedron and then adjusting the edge lengths to be all equal.

It can be alternated into the inverted snub dodecadodecahedron after equalizing edge lengths.

Vertex coordinates[edit | edit source]

A quasitruncated dodecadodecahedron of edge length 1 has vertex coordinates given by all permutations of

along with all even permutations of:

Related polyhedra[edit | edit source]

o5/3o5o truncations
Name OBSA Schläfli symbol CD diagram Picture
Small stellated dodecahedron sissid {5/3,5} x5/3o5o (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 5.pngCDel node.png)
Small stellated dodecahedron.png
Quasitruncated small stellated dodecahedron quit sissid t{5/3,5} x5/3x5o (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 5.pngCDel node.png)
Small stellated truncated dodecahedron.png
Dodecadodecahedron did r{5,5/3} o5/3x5o (CDel node.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 5.pngCDel node.png)
Dodecadodecahedron.png
Truncated great dodecahedron tigid t{5,5/3} o5/3x5x (CDel node.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 5.pngCDel node 1.png)
Great truncated dodecahedron.png
Great dodecahedron gad {5,5/3} o5/3o5x (CDel node.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 5.pngCDel node 1.png)
Great dodecahedron.png
Complex ditrigonal rhombidodecadodecahedron (degenerate, ditdid+rhom) cadditradid rr{5,5/3} x5/3o5x (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 5.pngCDel node 1.png)
Quasitruncated dodecadodecahedron quitdid tr{5,5/3} x5/3x5x (CDel node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 5.pngCDel node 1.png)
Truncated dodecadodecahedron.png
Inverted snub dodecadodecahedron isdid sr{5,5/3} s5/3s5s (CDel node h.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node h.pngCDel 5.pngCDel node h.png)
Inverted snub dodecadodecahedron.png

External links[edit | edit source]