Quasirhombicuboctahedron

From Polytope Wiki
(Redirected from Querco)
Jump to navigation Jump to search
Quasirhombicuboctahedron
Uniform great rhombicuboctahedron.png
Rank3
TypeUniform
SpaceSpherical
Notation
Bowers style acronymQuerco
Coxeter diagramx4/3o3x (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node 1.png)
Elements
Faces8 triangles, 6+12 squares
Edges24+24
Vertices24
Vertex figureCrossed isosceles trapezoid, edge lengths 1, 2, 2, 2
Uniform great rhombicuboctahedron vertfig.png
Measures (edge length 1)
Circumradius
Volume
Dihedral angles4–4: 45°
 4–3:
Central density5
Number of external pieces488
Level of complexity73
Related polytopes
ArmyTic, edge length
RegimentGocco
DualGreat deltoidal icositetrahedron
ConjugateSmall rhombicuboctahedron
Convex coreChamfered cube
Abstract & topological properties
Flag count192
Euler characteristic2
OrientableYes
Genus0
Properties
SymmetryB3, order 48
ConvexNo
NatureTame

The quasirhombicuboctahedron, also commonly known as the nonconvex great rhombicuboctahedron, or querco is a uniform polyhedron. It consists of 8 triangles and 6+12 squares, with one triangle and three squares meeting at each vertex. It also has 6 octagrammic pseudofaces. It can be obtained by quasicantellation of the cube or octahedron, or equivalently by pushing either polyhedron's faces inward and filling the gaps with squares.

6 of the squares in this figure have full BC2 symmetry, while 12 of them have only A1×A1 symmetry with respect to the whole polyhedron.

It is also sometimes called a great rhombicuboctahedron, but is not to be confused with the convex polyhedron with the same name.

It is a faceting of the great cubicuboctahedron, using the original's squares and triangles, while also introducing 12 additional squares.

Related polyhedra[edit | edit source]

The rhombisnub quasirhombicosicosahedron is a uniform polyhedron compound composed of 5 quasirhombicuboctahedra.

The quasirhombicuboctahedron can be constructed as an octagrammic prism augmented with retrograde square cupolas facing inwards on the octagrammic faces.

Vertex coordinates[edit | edit source]

Its vertices are the same as those of its regiment colonel, the great cubicuboctahedron.

o4/3o3o truncations
Name OBSA Schläfli symbol CD diagram Picture
Cube cube {4/3,3} x4/3o3o (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node.png)
Hexahedron.png
Quasitruncated hexahedron quith t{4/3,3} x4/3x3o (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node.png)
Stellated truncated hexahedron.png
Cuboctahedron co r{3,4/3} o4/3x3o (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node.png)
Cuboctahedron.png
Truncated octahedron toe t{3,4/3} o4/3x3x (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Truncated octahedron.png
Octahedron oct {3,4/3} o4/3o3x (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node 1.png)
Octahedron.png
Quasirhombicuboctahedron querco rr{3,4/3} x4/3o3x (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node 1.png)
Uniform great rhombicuboctahedron.png
Quasitruncated cuboctahedron quitco tr{3,4/3} x4/3x3x (CDel node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node 1.pngCDel 3.pngCDel node 1.png)
Great truncated cuboctahedron.png
(degenerate, oct+6(4)) o4/3o3ß (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node.pngCDel 3.pngCDel node h1.png)
Octahedron.png
Icosahedron ike s{3,4/3} o4/3s3s (CDel node.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel node h.pngCDel 3.pngCDel node h.png)
Icosahedron.png

External links[edit | edit source]