Rectified ditrigonary tritetragonal tiling
Jump to navigation
Jump to search
Rectified ditrigonary tritetragonal tiling | |
---|---|
![]() | |
Rank | 3 |
Type | Uniform |
Space | Hyperbolic |
Notation | |
Bowers style acronym | Sittitetrat |
Coxeter diagram | x3x3o4*a (![]() ![]() ![]() |
Elements | |
Faces | 4N triangles, 3N squares, 4N hexagons |
Edges | 12N+12N |
Vertices | 12N |
Vertex figure | Isosceles trapezoid, edge lengths 1, √3, √2, √3 |
Measures (edge length 1) | |
Circumradius | |
Related polytopes | |
Army | Sittitetrat |
Regiment | Sittitetrat |
Abstract & topological properties | |
Surface | Sphere |
Orientable | Yes |
Genus | 0 |
Properties | |
Symmetry | (4,3,3) |
Convex | Yes |
The rectified ditrigonary tritetragonal tiling', shieldotritetragonal tiling, small tritetatrigonal tiling, sittitetrat, or cantic octagonal tiling is a uniform tiling of the hyperbolic plane. 1 triangle, 1 square, and 2 hexagons join at each vertex.
It is based on the (4,3,3) triangle group.
Representations[edit | edit source]
This tiling has the following Coxeter diagram representations:
- x3x3o4*a (
) (rectified ditrigonary tritetragonal tiling)
- s8o3x (
) (cantic octagonal tiling)
Related polytopes[edit | edit source]
External links[edit | edit source]
- Klitzing, Richard. "sittitetrat".
- Wikipedia Contributors. "Cantic octagonal tiling".