Rectified great hecatonicosachoron

From Polytope Wiki
Jump to navigation Jump to search
Rectified great hecatonicosachoron
Righi.png
Rank4
TypeUniform
SpaceSpherical
Notation
Bowers style acronymRighi
Coxeter diagramo5x5/2o5o (CDel node.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel rat.pngCDel 2x.pngCDel node.pngCDel 5.pngCDel node.png)
Elements
Cells120 small stellated dodecahedra, 120 dodecadodecahedra
Faces720 pentagons, 1440 pentagrams
Edges3600
Vertices720
Vertex figureSemi-uniform pentagonal prism, edge lengths (5–1)/2 (base) and (1+5)/2 (side)
Measures (edge length 1)
Circumradius
Hypervolume
Dichoral anglesSissid–5/2–did: 144°
 Did–5–did: 144°
Central density6
Number of pieces3720
Level of complexity14
Related polytopes
ArmyRox
RegimentRighi
ConjugateRectified grand stellated hecatonicosachoron
Convex coreHecatonicosachoron
Abstract properties
Euler characteristic–960
Topological properties
OrientableYes
Properties
SymmetryH4, order 14400
ConvexNo
NatureTame
Discovered by{{{discoverer}}}

The rectified great hecatonicosachoron, or righi, is a nonconvex uniform polychoron that consists of 120 small stellated dodecahedra and 120 dodecadodecahedra. Two small stellated dodecahedra and five dodecadodecahedra join at each pentagonal prismatic vertex. As the name suggests, it can be obtained by rectifying the great hecatonicosachoron.

Cross-sections[edit | edit source]

Card with cell counts, vertex figure, and cross-sections. Righi-slices.gif Righi-reg.png

Vertex coordinates[edit | edit source]

The vertices of a rectified great hecatonicosachoron of edge length 1 are given by all permutations of:

along with even permutations of:

Related polychora[edit | edit source]

The rectified great hecatonicosachoron is the colonel of a regiment with 15 members. Of these, one other besideds the colonel itself is Wythoffian (the rectified grand hecatonicosachoron), two are hemi-Wythoffian (the pentagrammal antiprismatoverted hexacosihecatonicosachoron and great pentagonal retroprismatoverted dishecatonicosachoron), and one is noble (the medial retropental hecatonicosachoron).

The rectified great hecatonicosachoron also has the same circumradius as the hexagonal-decagonal duoprism.

External links[edit | edit source]