Rectified hecatonicosachoron
Rectified hecatonicosachoron | |
---|---|
![]() | |
Rank | 4 |
Type | Uniform |
Space | Spherical |
Notation | |
Bowers style acronym | Rahi |
Coxeter diagram | o5x3o3o (![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Elements | |
Cells | 600 tetrahedra, 120 icosidodecahedra |
Faces | 2400 triangles, 720 pentagons |
Edges | 3600 |
Vertices | 1200 |
Vertex figure | Semi-uniform triangular prism, edge lengths 1 (base) and (1+√5)/2 (side) |
Edge figure | tet 3 id 5 id 3 |
Measures (edge length 1) | |
Circumradius | |
Hypervolume | |
Dichoral angles | Id–3–tet: |
Id–5–id: 144° | |
Central density | 1 |
Number of external pieces | 720 |
Level of complexity | 3 |
Related polytopes | |
Army | Rahi |
Regiment | Rahi |
Dual | Joined hexacosichoron |
Conjugate | Rectified great grand stellated hecatonicosachoron |
Abstract & topological properties | |
Flag count | 43200 |
Euler characteristic | 0 |
Orientable | Yes |
Properties | |
Symmetry | H4, order 14400 |
Convex | Yes |
Nature | Tame |
The rectified hecatonicosachoron, or rahi, also commonly called the rectified 120-cell, is a convex uniform polychoron that consists of 600 regular tetrahedra and 120 icosidodecahedra. Two tetrahedra and three icosidodecahedra join at each triangular prismatic vertex. As the name suggests, it can be obtained by rectifying the hecatonicosachoron.
Cross-sections[edit | edit source]
Vertex coordinates[edit | edit source]
The vertices of a rectified hecatonicosachoron of edge length 1 are given by all permutations of:
along with all even permutations of:
Representations[edit | edit source]
A rectified hecatonicosachoron has the following Coxeter diagrams:
- o5x3o3o (full symmetry)
- ofxoxooxFf(oV)fFxooxoxfo5xoxfofFxoo(xo)ooxFfofxox3oooxFfofxF(Vo)FxfofFxooo&#xt (H3 axial, icosidodecahedron-first)
Related polychora[edit | edit source]
The rectified hecatonicosachoron is the colonel of a 3-member regiment that also includes the facetorectified hecatonicosachoron and small hecatonicosintercepted hecatonicosachoron.
Name | OBSA | CD diagram | Picture |
---|---|---|---|
Hecatonicosachoron | hi | x5o3o3o | |
Truncated hecatonicosachoron | thi | x5x3o3o | |
Rectified hecatonicosachoron | rahi | o5x3o3o | |
Hexacosihecatonicosachoron | xhi | o5x3x3o | |
Rectified hexacosichoron | rox | o5o3x3o | |
Truncated hexacosichoron | tex | o5o3x3x | |
Hexacosichoron | ex | o5o3o3x | |
Small rhombated hecatonicosachoron | srahi | x5o3x3o | |
Great rhombated hecatonicosachoron | grahi | x5x3x3o | |
Small rhombated hexacosichoron | srix | o5x3o3x | |
Great rhombated hexacosichoron | grix | o5x3x3x | |
Small disprismatohexacosihecatonicosachoron | sidpixhi | x5o3o3x | |
Prismatorhombated hexacosichoron | prix | x5x3o3x | |
Prismatorhombated hecatonicosachoron | prahi | x5o3x3x | |
Great disprismatohexacosihecatonicosachoron | gidpixhi | x5x3x3x |
Isogonal derivatives[edit | edit source]
Substitution by vertices of these following elements will produce these convex isogonal polychora:
- Icosidodecahedron (120): Hexacosichoron
- Tetrahedron (600): Hecatonicosachoron
- Pentagon (720): Rectified hexacosichoron
- Triangle (2400): Semi-uniform small disprismatohexacosihecatonicosachoron
- Edge (3600): Semi-uniform small rhombated hecatonicosachoron
External links[edit | edit source]
- Bowers, Jonathan. "Category 3: Triangular Rectates" (#48).
- Klitzing, Richard. "rahi".
- Quickfur. "Rectified hecatonicosachoron".
- Wikipedia Contributors. "Rectified 120-cell".