# Rhombihedron

(Redirected from Rhom)
Rhombihedron Rank3
TypeUniform
SpaceSpherical
Notation
Bowers style acronymRhom
Elements
Components5 cubes
Faces30 squares
Edges60
Vertices20
Vertex figureGolden hexagram, edge length 2
Measures (edge length 1)
Circumradius$\frac{\sqrt3}{2} ≈ 0.86603$ Inradius$\frac12 = 0.5$ Volume5
Dihedral angle90°
Central density5
Related polytopes
ArmyDoe
RegimentSidtid
DualSmall icosicosahedron
ConjugateRhombihedron
Convex coreRhombic triacontahedron
Abstract properties
Schläfli type{4,3}
Topological properties
OrientableYes
Properties
SymmetryH3, order 120
ConvexNo
NatureTame

The rhombihedron, rhom, or compound of five cubes is a uniform polyhedron compound. It consists of 30 squares. The vertices coincide in pairs, leading to 20 vertices where 6 squares join.

It has the same edges as the small ditrigonary icosidodecahedron.

This compound is sometimes considered to be regular, but it is not flag-transitive, despite the fact it is vertex, edge, and face-transitive. It is however regular if you consider conjugacies along with its other symmetries.

Its quotient prismatic equivalent is the cubic pentachoroorthowedge, which is seven-dimensional.

## Vertex coordinates

The vertices of a rhombihedron of edge length 1 are given by:

• $\left(±\frac12,\,±\frac12,\,±\frac12\right),$ along with all even permutations of:

• $\left(0,\,±\frac{\sqrt5-1}{4},\,±\frac{1+\sqrt5}{4}\right).$ 