Rectified great ditrigonary hexacosihecatonicosachoron

(Redirected from Riggidtixhi)
Rectified great ditrigonary hexacosihecatonicosachoron
Rank4
TypeUniform
Notation
Bowers style acronymRiggidtixhi
Coxeter diagram (o3x3o3/2o5*b)
Elements
Cells600 octahedra, 120 great ditrigonary icosidodecahedra, 120 icosidodecahedra
Faces2400+2400 triangles, 1440 pentagons
Edges7200
Vertices1200
Vertex figureTripod prism, base edge lengths 1 and (1+5)/2, side edge length 1
Measures (edge length 1)
Circumradius${\displaystyle {\sqrt {3}}\approx 1.73205}$
Hypervolume${\displaystyle 20\left(5+9{\sqrt {5}}\right)\approx 502.49224}$
Dichoral anglesGidtid–3–oct: ${\displaystyle \arccos \left(-{\frac {\sqrt {10}}{4}}\right)\approx 142.23876^{\circ }}$
Gidtid–5–id: 108°
Id–3–oct: ${\displaystyle \arccos \left(-{\frac {\sqrt {7-3{\sqrt {5}}}}{4}}\right)\approx 97.76124^{\circ }}$
Central density39
Related polytopes
ArmyRahi
RegimentRissidtixhi
ConjugateRectified small ditrigonary hexacosihecatonicosachoron
Abstract & topological properties
Euler characteristic–600
OrientableYes
Properties
SymmetryH4, order 14400
ConvexNo
NatureTame

The rectified great ditrigonary hexacosihecatonicosachoron, or riggidtixhi, is a nonconvex uniform polychoron that consists of 600 regular octahedra, 120 great ditrigonary icosidodecahedra, and 120 icosidodecahedra. 2 great ditrigonary icosidodecahedra, 3 icosidodecahedra, and 3 octahedra join at each tripod prismatic vertex. As the name suggests, it can be obtained by rectifying the great ditrigonary hexacosihecatonicosachoron.

Vertex coordinates

Its vertices are the same as those of its regiment colonel, the rectified small ditrigonary hexacosihecatonicosachoron.

Related polychora

Rissidtixhi regiment
Index Name OBSA Company Subcategory
1147 Rectified small ditrigonary hexacosihecatonicosachoron Rissidtixhi Rissidtixhi Main nine
1148 Rectified ditrigonary dishecatonicosachoron Ridtidohi Ridtidohi Main nine
1149 Rectified great ditrigonary hexacosihecatonicosachoron Riggidtixhi Riggidtixhi Main nine
1150 Small ditrigonary dishecatonicosachoron Sidditdy Sidditdy Main nine
1151 Retroditrigonary dishecatonicosachoron Ridditdy Ridditdy Main nine
1152 Great ditrigonary dishecatonicosachoron Gidditdy Gidditdy Main nine
1153 Ditrigonary hexacosidishecatonicosachoron Dittixdy Main nine
1154 Ditrigonary trishecatonicosachoron Dittathi Main nine
1155 Toroidal ditrigonary hexacosidishecatonicosachoron Todtixady Main nine
1156 Small ditrigonary dishecatonicosihecatonicosachoron Sidtid hihy Sixteen trapezics
1157 Ditrigonary hecatonicosidishecatonicosachoron Dithidy Sixteen trapezics