# Skew decagon

Skew decagon
Rank2
Dimension3
TypeRegular
Notation
Schläfli symbol${\displaystyle \{10\}\#\{\}}$
${\displaystyle \{10\}\#\{2\}}$
${\displaystyle \left\{{\dfrac {10}{1,5}}\right\}}$
Elements
Edges10
Vertices10
Related polytopes
ArmyPap
Convex hullPentagonal antiprism
Abstract & topological properties
Euler characteristic0
Schläfli type{10}
OrientableYes
Properties
Symmetry(I2(10)×A1)/2, order 16
ConvexNo
Net count1
Dimension vector(1,2)

The skew decagon is a regular skew polygon in 3D Euclidean space. It is the result of blending a decagon with a digon. It consists of the 10 lateral edges of a pentagonal antiprism.

## Related polytopes

There are 4 regular skew polygons with 10 sides in 3D Euclidean space:

• ${\displaystyle \left\{{\dfrac {10}{1,5}}\right\}}$, the skew decagon
• ${\displaystyle \left\{{\dfrac {10}{2,5}}\right\}}$, the skew pentagon
• ${\displaystyle \left\{{\dfrac {10}{3,5}}\right\}}$, the skew decagram
• ${\displaystyle \left\{{\dfrac {10}{4,5}}\right\}}$, the skew pentagram