# Skew octagon

Skew octagon
Rank2
TypeRegular
Space3D Euclidean space
Notation
Schläfli symbol${\displaystyle \{8\}\#\{\}}$
${\displaystyle \{8\}\#\{2\}}$
${\displaystyle \left\{{\dfrac {8}{1,4}}\right\}}$
Elements
Edges8
Vertices8
Related polytopes
ArmySquap
Convex hullSquare antiprism
Abstract & topological properties
Euler characteristic0
Schläfli type{8}
OrientableYes
Properties
Symmetry(I2(8)×A1)/2, order 16
ConvexNo
Net count1
Dimension vector(1,2)

The skew octagon is a regular skew polygon in 3D Euclidean space. It is the result of blending an octagon with a digon. It consists of the 8 lateral edges of a square antiprism.

## Related polytopes

### Other skew octagons

The Skew octagon is one of 12 regular polygons in Euclidean space.

Octagons in Euclidean space
Name Extended Schläfli symbol Dimensions
octagon ${\displaystyle \left\{{\dfrac {8}{1}}\right\}}$ 2
octagram ${\displaystyle \left\{{\dfrac {8}{3}}\right\}}$ 2
octagonal-square coil ${\displaystyle \left\{{\dfrac {8}{1,2}}\right\}}$ 4
octagonal-octagrammic coil ${\displaystyle \left\{{\dfrac {8}{1,3}}\right\}}$ 4
skew octagon ${\displaystyle \left\{{\dfrac {8}{1,4}}\right\}}$ 3
square-octagrammic coil ${\displaystyle \left\{{\dfrac {8}{2,3}}\right\}}$ 4
skew octagram ${\displaystyle \left\{{\dfrac {8}{3,4}}\right\}}$ 3
octagonal-square-octagrammic coil ${\displaystyle \left\{{\dfrac {8}{1,2,3}}\right\}}$ 6
skew octagonal-square coil ${\displaystyle \left\{{\dfrac {8}{1,2,4}}\right\}}$ 5
skew octagonal-octagrammic coil ${\displaystyle \left\{{\dfrac {8}{1,3,4}}\right\}}$ 5
skew square-octagrammic coil ${\displaystyle \left\{{\dfrac {8}{2,3,4}}\right\}}$ 5
skew octagonal-square-octagrammic coil ${\displaystyle \left\{{\dfrac {8}{1,2,3,4}}\right\}}$ 7