# Skew octagon

Skew octagon Rank2
TypeRegular
Space3D Euclidean space
Notation
Schläfli symbol$\{8\}\#\{\}$ $\{8\}\#\{2\}$ $\left\{\dfrac{8}{1,4}\right\}$ Elements
Edges8
Vertices8
Related polytopes
ArmySquap
Convex hullSquare antiprism
Abstract & topological properties
Euler characteristic0
Schläfli type{8}
OrientableYes
Properties
Symmetry(I2(8)×A1)/2, order 16
ConvexNo
Net count1
Dimension vector(2,1)

The skew octagon is a regular skew polygon in 3D Euclidean space. It is the result of blending an octagon with a digon. It consists of the 8 lateral edges of a square antiprism.

## Related polytopes

### Other skew octagons

The Skew octagon is one of 12 regular polygons in Euclidean space.

Octagons in Euclidean space
Name Extended Schläfli symbol Dimensions
octagon $\left\{\dfrac{8}{1}\right\}$ 2
octagram $\left\{\dfrac{8}{3}\right\}$ 2
octagonal-square coil $\left\{\dfrac{8}{1,2}\right\}$ 4
octagonal-octagrammic coil $\left\{\dfrac{8}{1,3}\right\}$ 4
skew octagon $\left\{\dfrac{8}{1,4}\right\}$ 3
square-octagrammic coil $\left\{\dfrac{8}{2,3}\right\}$ 4
skew octagram $\left\{\dfrac{8}{3,4}\right\}$ 3
octagonal-square-octagrammic coil $\left\{\dfrac{8}{1,2,3}\right\}$ 6
skew octagonal-square coil $\left\{\dfrac{8}{1,2,4}\right\}$ 5
skew octagonal-octagrammic coil $\left\{\dfrac{8}{1,3,4}\right\}$ 5
skew square-octagrammic coil $\left\{\dfrac{8}{2,3,4}\right\}$ 5
skew octagonal-square-octagrammic coil $\left\{\dfrac{8}{1,2,3,4}\right\}$ 7